

User Manual

Wattsonic Li-HV Commercial Three Phase Hybrid 25/30/36/40/50K-100A-3P | Li-HV 65/130/195/260/325kWh

LIFE'S INNOVATION

Contents

Overview 🔪 6

1.1 Overview	6
1.2 Safety instructions and warning	7
1.2.1 Explanation of symbols	7
1.2.2 Safety instructions	8
1.2.3 Statement	10

Product Installation \ 24

3.1 Installation tool	24
3.2 Packing list	24
3.3 Supported installation environment3.3.1 Installation location of inverter3.3.2 Installation location of cabinet	26 26 26
3.4 Commercial cabinet installation3.4.1 Installation preparation3.4.2 Single-cabinet installation3.4.3 Multi-cabinet installation	27 27 28 30
3.5 Inverter installation	32
3.5.1 Installation preparation	32
3.5.2 Mounting the inverter	34

Product and System Introduction 🔪 11

2.1 System introduction	
2.2 Operation modes 2.2.1 Running modes introduction 2.2.2 Back-up and off-grid output	12 12 16
2.3 Product introduction2.3.1 Inverter2.3.2 Battery module2.3.3 Master & Sub-Master BMS2.3.4 Cabinet frame	17 18 20 20 23
2.4 Delivery and storage	23

Electrical Connection 35

4.1 External ground connection	35
4.2 Connection between BMS and inverter 4.2.1 Single-cabinet 4.2.2 Multi-cabinet	37 37 41
4.3 Electrical wiring diagram	46
4.4 AC connection4.4.1 AC side requirements4.4.2 Installing the AC connector4.4.3 Removal the AC connector	49 49 50 51
4.5 Monitoring device installation	52
4.6 Meter and CT connection	52
4.7 Communication connection4.7.1 Assembling the multi-COM connector4.7.2 Onnect the meter and BMScommunication cables	54 54 55

4.7.3 Connect other cables	56
4.7.4 Installing the COM connector	57
4.7.5 Meter and BMS communication	57
4.7.6 EMS communication	58
4.7.7 Dred	58
4.7.8 Multifunction relay	58
4.7.9 Parallel system	59
4.8 PV string connection	60
4.8.1 PV side requirements	60
4.8.2 Assembling the PV connector	61
4.8.3 Installing the PV connector	62

Monitoring \ 77

7.1 Monitoring device	77
7.2 Cloud monitoring app	77
7.3 Local configuration app	77

Commissioning and Maintenance **** ₆₃

5.1 System strart and stop	63
5.1.1 Startup procedures	63
5.1.2 Stop procedures	64
5.1.3 Emergency stop function	64
5.2 Inverter commissioning	65
5.2.1 App preparation	65
5.2.2 Inspection	65
5.2.3 Commissioning precedures	65
5.3 Maintenance	66

Troubleshooting \ 78

8.1 Error message	78
8.2 Inverter maintenance	e 81
8.3 Battery maintenance	e 82

Inverter Operation \ 67

6.1 Main window	67
6.2 General setting	68
6.3 Advanced setting	69
6.4 Country code (safety code) setting	72
6.5 Auto-test	72
6.6 Reactive power 6.6.1 "Off" modes 6.6.2 "PF" mode 6.6.3 "Qt" mode 6.6.4 "Q(P)" mode 6.6.5 "Q(U)" mode	74 74 74 75 76

Appendix 83

9.1 Technical parameters	83
9.2 Contact information	89

Overview

1.1 Overview

Thank you for selecting the **Wattsonic Li–HV Commercial Three Phase Hybrid Series**. Of course, you have made a great decision and will be pleased with this product's features, benefits, and quality.

These instructions will help you to familiarise yourself with the Wattsonic Li–HV Commercial Three Phase Hybrid Series, and you will experience a smooth and efficient journey, and make sure to get the maximum benefit from this powerful device by reading the instructions.

Warning: Before installing or using the Wattsonic Commercial Cabinet, read this document. Failure to do so or to follow any of the instructions or warnings in this document can result in electrical shock, serious injury, death, or damage to the Wattsonic product, potentially rendering it in operable.

Before installing and using this product, please read this manual carefully, understand the safety information, and be familiar with the functions and characteristics of this device. The manual content of subsequent versions may be subject to change. You can find the newest manual at www.wattsonic.com.

Errors or omissions

To communicate any inaccuracies or omissions in this manual, please send an email to: service@wattsonic.com

DEKRA CE ©2023 All right

©2023 Wuxi Wattsonic Energy Technology Co., Ltd. All rights reserved.

ELECTRONIC DEVICE: DO NOT THROW AWAY

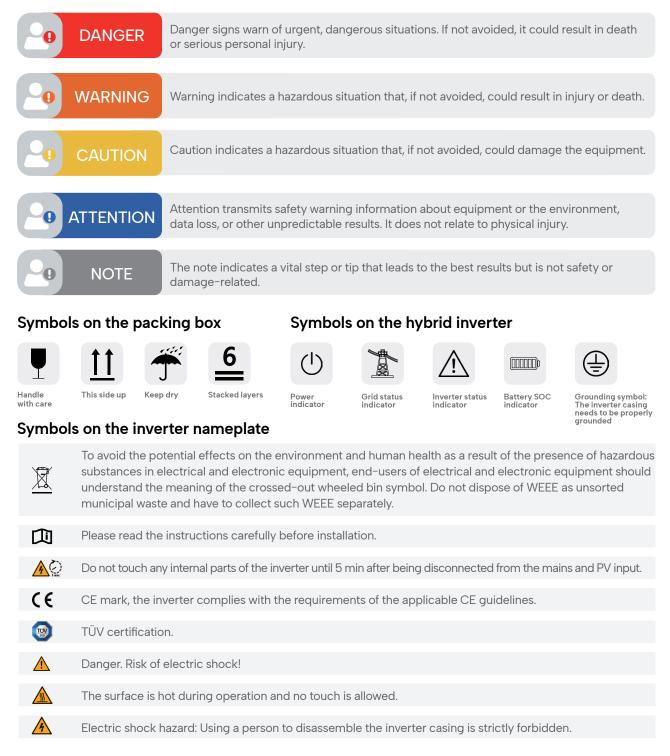
Proper disposal of batteries is required. Refer to your local codes for disposal requirements. (ie. EC N 1013/2006 among European Union).

Copyright

All information in this document is subject to copyright and other intellectual property rights of Wuxi Wattsonic Energy Technology Co., Ltd. and its licensors. This material may not be modified, reproduced or copied, in whole or in part, without the prior written permission of Wuxi Wattsonic Energy Technology Co., Ltd. and its licensors. Additional information is available upon request. The following are trademarks or registered trademarks of Wuxi.

Wattsonic Energy Technology Co., Ltd. in Jermany, South Africa, Australia, UK and other countries:

All other trademarks in this document are the property of their respective owners, and their use herein does not imply sponsorship or endorsement of their products or services. The unauthorized use of any trademark displayed in this document or on the product is strictly prohibited.


1.2 Safety instructions and warning

1.2.1 Explanation of symbols

PLEASE SAVE THESE ESSENTIAL SAFETY GUIDELINES.

Wattsonic Commercial Cabinet, installation and repair instructions assume knowledge of high voltage electricity and should only be performed by Wattsonic Certified Installers. Wattsonic assumes no liability for injury or property damage due to repairs attempted by unqualified individuals or a failure to follow these instructions properly. These warnings and cautions must be followed when using Wattsonic Commercial Cabinet.

This manual uses the following symbols to highlight important information:

1.2.2 Safety instructions

Caution: Please ensure no flammable materials are near the cabinet or module when installing the Wattsonic Commercial Cabinet, and keep a fire extinguisher in an accessible place.

Do not pile things on modules or cabinets.

Avoid installing in locations where there is a risk of flooding.

The product should be installed and kept level.

The installation position should be stable enough to support a certain amount of weight and vibration.

The appropriate battery storage and operation temperature is 25±5°C.

Caution: The humidity range of battery operation and storage is 40 to 80%.

Please adjust the cabinet room to a proper temperature for better battery performance and life span.

Please adjust the cabinet room to a proper humidity; otherwise, it may cause battery failure or fire.

Do not install the cabinet if the temperature is beyond the $-20-60^{\circ}$ C range or the humidity is above 80%.

Do not install product with damaged or uninsulated tools.

Please ensure the earth ground wire connection is stable to prevent possible electric shock.

The installation must be carried out only by Wattsonic Certified Installers, who have been trained in dealing with high voltage electricity.

The battery may be in danger of high voltage or short circuit. Please follow the instructions when conducting installation and other operations:

Remove rings, watches, or other metal and conducting electricity objects;

Wear insulated gloves before operation;

Use tools with insulating isolation;

Do not put tools or metal parts on top of the modules and cabinets;

Do not use cleaning solvents to clean the product, or expose the product to flammable or harsh chemicals or vapors;

Do not use fluids, parts, or accessories other than those specified in this manual, including the use of nongenuine Wattsonic parts or accessories or parts or accessories not purchased directly from Wattsonic or a Wattsonic-certified party.

Warning: Read this entire document before installing or using Wattsonic Commercial Cabinet. Failure to do so or to follow any of the instructions or warnings in this document can result in electrical shock, serious injury, or death, or can damage the product, potentially rendering it inoperable.

Do not short the positive and negative terminals of Module or Sub-Master BMS.

Do not modify, short circuit, or disassemble the modules.

Do not attempt to open, disassemble, repair, tamper with, or modify Wattsonic battery module. Wattsonic battery module is not user serviceable. LFP Cells in Wattsonic Battery are not replaceable. Contact the Wattsonic Authorized Reseller who sold the battery for any repairs.

Please do not throw the battery or shock it.

Do not modify the cables, including power cables, communication cables, etc.

Prohibit battery wiring in any other way than specified in the manual.

Incorrect wiring connections may cause product damage and danger.

Do not touch any metal terminals and mental objects linked with the mental terminals of the module.

Do not use or install the product if it is defective, appears cracked, broken, or otherwise damaged, or fails to operate.

There is a high possibility of electric shock or severe burns due to the high voltage.

This product has potential danger such as death or serious injury by fire, high voltages or explosion if the precautions are not read or fully understood.

The local and national electrical safety standards must do electrical installations.

Rubber gloves and protective clothing (goggles and boots) should be worn when working on high voltage/ high current systems such as battery systems.

The danger of electric shock. Do not remove the cover. There are no internal parts that users can service. Contact a qualified authorized technician for service.

Note: 1) Before installation, please read this manual carefully and follow the instructions in this manual strictly.

2) Installers must undergo professional training or obtain electrical related professional qualification certificates.

3) When installing, do not open the front cover of the inverter. Apart from performing work at the wiring terminal (as instructed in this manual), touching or changing components without authorization may cause injury to people, damage to inverters, and annulment of the warranty.

4) All electrical installations must conform to local electrical safety standards.

5) If the inverter needs maintenance, please get in touch with the local designated personnel for installation and maintenance.

6) To use this inverter for power generation needs the permission of the local power supply authority.

7) The temperature of some parts of the inverter may exceed 60° C during operation. To avoid being burnt, do not touch the inverter during the process. Let it cool before touching it.

8) When exposed to sunlight, the PV array generates dangerous high DC voltage. Please operate according to our instructions, or it will endanger your life.

9) When wiring the lithium battery terminals, please disconnect the breaker or switch of the lithium battery in case of a physical injury caused by the high voltage.

1.2.3 Statement

Warranty Statement

Wuxi Wattsonic Energy Technology Ltd. has the right not to undertake quality assurance in any of the following circumstances:

1) Damages caused by improper transportation.

- 2) Damages caused by incorrect storage, installation or use.
- 3) Damages caused by installation and use of equipment by non-professionals or untrained personnel.
- 4) Damages caused by failure to comply with this document's instructions and safety warnings.

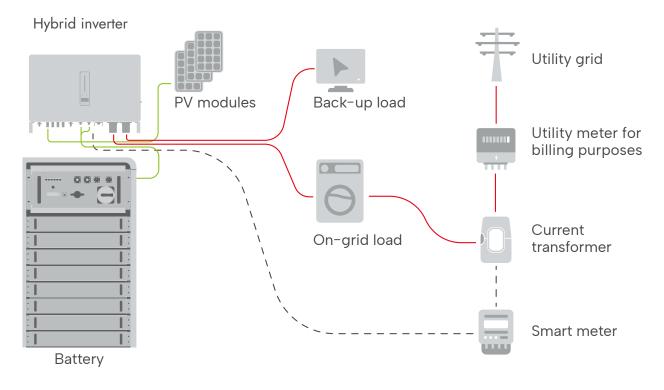
5) Damages of running in an environment that does not meet the requirements stated in

this document.

- 6) Damages caused by operation beyond the parameters specified in applicable technical specifications.
- 7) Damages caused by unauthorized disassembly, alteration of products, or modification of software codes.
- 8) Damages caused by abnormal natural environment (force majeure, such as lightning, earthquake, fire, storm, etc.).
- 9) Any damages caused by the process of installation and operation that don't follow the local standards and regulations.
- 10) Products beyond the warranty period.

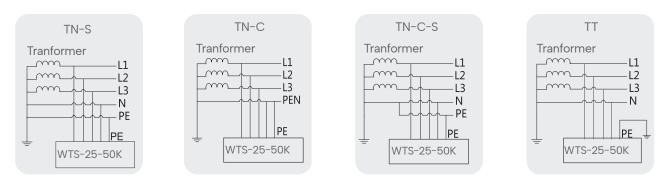
Qualified personnel

TO SECURE THE FULL 10-YEAR BATTERY PRODUCT WARRANTY, INSTALL THE WATTSONIC COMMERCIAL CABINET WITH QUALIFIED INSTALLERS.

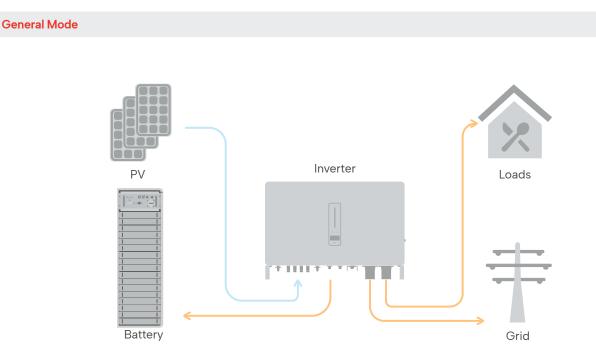

This manual applies to electrical installers with professional qualifications, who should have the following skills:

- 1) Training for installation and commissioning of the electrical system, as well as dealing with hazards.
- 2) Knowledge of the manual and other related documents.
- 3) Knowledge of the local regulations and directives.

Product and system introduction

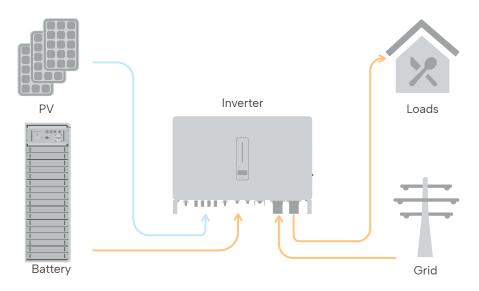

2.1 System introduction

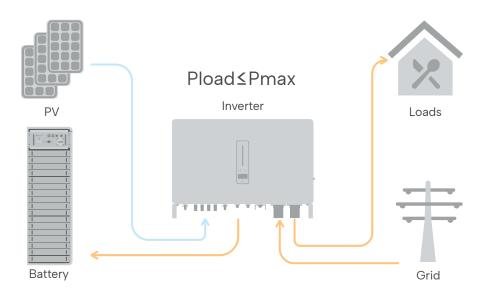
The hybrid solar system usually comprises the PV array, hybrid inverter, lithium battery, loads, and power grid.


Note: The system is not suitable for supplying life-sustaining medical devices. It cannot guarantee backup power in all circumstances.

The applicable grid types for the Wattsonic WTS-[25-50kW]-100A-3P series are TN-S, TN-C, TN-C-S, and TT. When applied to the TT grid, the voltage of N to PE suggests less than 30V.

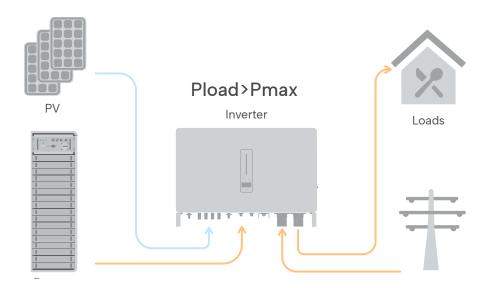
2.2 Operation modes


Wattsonic WTS Hybrid inverter has the following basic operation modes, and you can configure the operation mode as per your preference in the App.

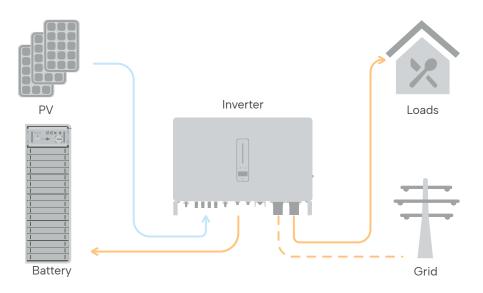

2.2.1 Running modes introduction

In this working mode, when the power from the PV array is sufficient, PV power will supply the loads, battery, and grid in the order of loads first, battery second, and grid last.

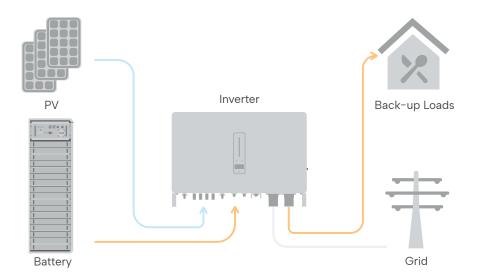
(You can set the power to the grid to 0W when the local grid doesn't allow inverter power to feed to the grid).



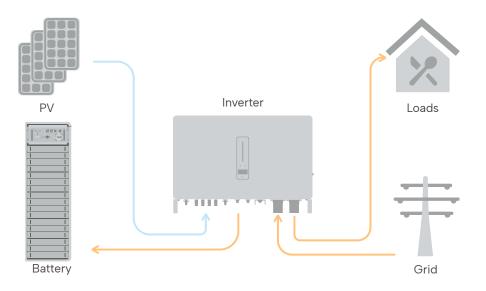
When the PV power is insufficient, the battery will discharge to supply loads, and the grid will join in if the battery is not enough to supply loads.

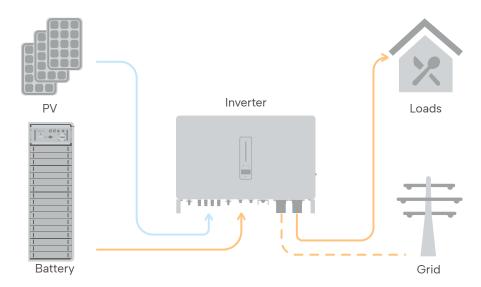

Set the maximum power Pmax (kVA) contracted with the grid.

When the load consumption is less than the Pmax, the PV will charge the battery first, and the grid will supply the load. Once the battery is complete, the PV will power the load and the grid rather than the battery.

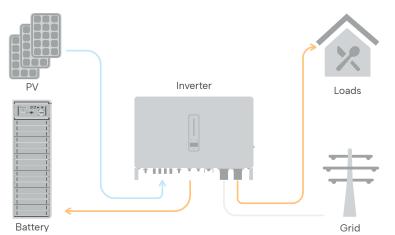


When the load consumption exceeds the Pmax, the inverter will take power from the battery and PV to supply power to the load to compensate for the power that exceeds the Pmax.

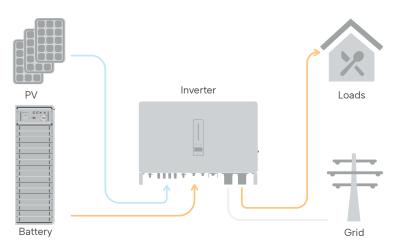

*To realize the "Peak load Shifting" function, the load power that exceeds Pmax has to be within the inverter max output power. Otherwise, the inverter will only output the maximum power allowed.


In this working mode, the inverter will use the power from the PV or grid to charge the battery until it is fully charged, and as long as the grid is there, the battery won't discharge.

When the grid fails, power from the PV and battery will supply loads connected to the backup side (UPS).



In this working mode, you can set charge/discharge power and time in the App. The inverter will use the energy from PV or the grid (whether to use it or not can be set in the App) to charge the battery for a predetermined period.



The inverter will use power from PV and batteries to supply loads for the predetermined period, and the grid will deliver the insufficient part.

Off-Grid Mode

In the purely off-grid mode, power from PV will supply the back-up loads first and then charge the battery if there's surpluspower.

When the power from PV isn't enough, the battery will discharge to supply backup loads with PV.

2.2.2 Back-up and off-grid output

Normally, the Back–Up switching time is less than 10ms. However, some external factors may cause the system to fail on switching to Back–Up mode. Therefore, the conditions for using the Back–Up function smoothly are as follows for your awareness.

1) Do not connect loads that are dependent on a stable energy supply for a reliable operation.

2) Do not connect loads with a total capacity more incredible than the maximum Backup capacity.

3) Do not connect the loads that may cause very high start-up current surges, such as non-frequency conversion air conditioning, vacuum cleaner or half-wave loads such as hair dryer, heat gun, hammer drill.

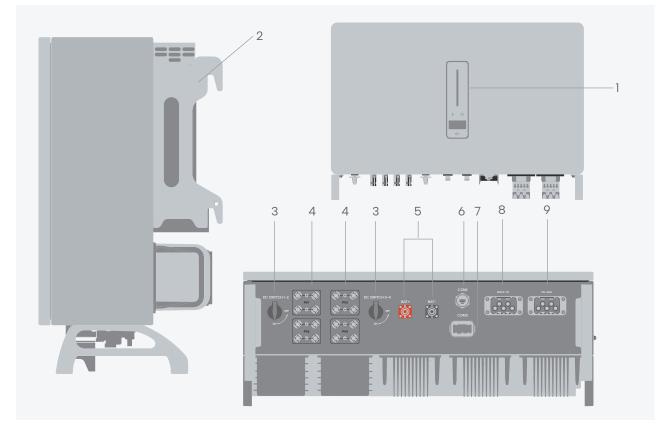
4) Due to the battery's condition, battery current might be limited by some factors, including but not limited to the temperature and weather.

The inverter will restart in case of overload protection. The time required for restarting will increase (5 min at most) if overload protection repeats. Try to reduce Back–Up load power within maximum limitation or remove the loads which may cause very high start–up current surges.

2.3 Product introduction

Control elements list

Picture	ltem	Content	Size(mm)
	Inverter	Inverter	W:800 D300 H:620
	Cabinet	Cabinet Frame	W:640 D:840 H:1970
	Battery Module	Battery Module	W:435 D:734 H:95
	Master BMS Module	Master BMS Module	W:518 D:367 H:180
	Sub-Master BMS Module	Sub-Master BMS Module	W:518 D:367 H:180
-	Accessory	Accessory	_

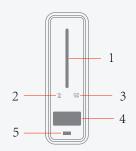

2.3.1 Inverter

The Wattsonic WTS-[25-50kW]-100A-3P series inverter is also known as a hybrid inverter or storage inverter, which is mainly used to combine the PV array, lithium battery, loads, and power grid to realize intelligent power management and dispatching.

The WTS-[25-50kW]-100A-3P series hybrid inverter includes 7 models, which are listed below:

WTS-25K-100, WTS-30K-100, WTS-36K-100, WTS-40K-100, WTS-50K-100, WTS-40K-P-100, WTS-50K-P-100

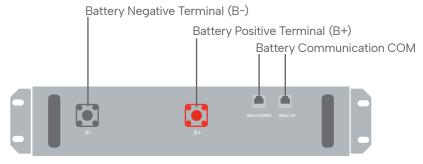
Connection area



Wiring terminals are at the bottom of the inverter, as shown in the table below.

ltem	Terminal	Note
1	Display and LED panel	Display the operation information and working status of the inverter.
2	Hanger	Used to hang the inverter on the wall-mounting bracket.
3	DC switch	Used to safely disconnect the DC circuit.
4	DC input terminal	PV connector (WTS-25-50K 8 pairs / WTS-40-50K-P 6 pairs)
5	Battery input terminal	Battery connector
6	COMI port	WiFi/LAN/4G module connector
7	COM2 port	Multi-function Connector (Meter/BMS/RS485/DRED)
8	On-grid output terminal	Used for On-grid output cable connection
9	Back-up output terminal	Used for Back-up output cable connection

Indicators/controls on the device



ltem	Indicator	Status		Description
1	Power and Alarm Indicator	Off		No power.
		Blue	Quick flashing	Inverter entered self-test status.
			Slow flashing	Inverter entered waiting status.
			Breathe flashing	Inverter works normal.
		Orange	Breathe flashing	Low battery warning, the battery power is about to reach the SOC protection value.
		Red	Always on	An alarm or fault is detected, view the fault info on the display.
	Grid Indicator	Off	Grid lost.	
2		Slow flashing	Inverter detected grid but not running in on-grid mode.	
		Always on	Inverter works in on-grid mode.	
3	Communication Indicator	Green	Always on	The inverter communication is running normally.
		Green	Flashing	The inverter communicates with EMS or Master inverter through RS485 or CAN.
		Orange	Always on	The inverter isn't communicating with Wattsonic smart meter.
		Red	Always on	The inverter isn't communicating with the BMS.
4	Display	Display off to save power, press the button to wake up the display.		
5	Button	Switch display information and set parameters by short press or long press.		

2.3.2 Battery module

A battery module consisting of battery cells and a slave control

Install it into the battery rack sequentially as instructed.

Battery Module (Front View)

2.3.3 Master & Sub-Master BMS

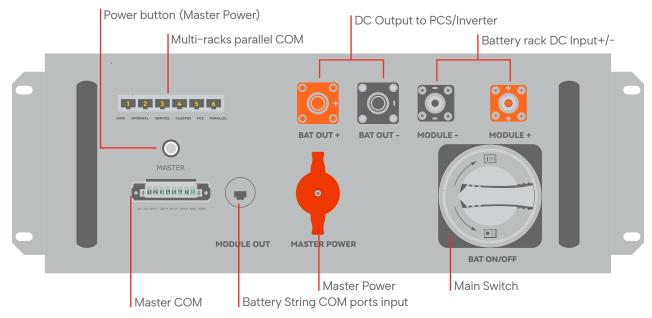
The battery management unit of the rack has a built-in Rack BMS and battery protection Unit. Mounted in the uppermost position of the cabinet.

Use 1*sub-master BMS for a single cabinet system.

Use 1*master BMS and (n-1)*sub-master BMS for a n*cabinet system.

Master power switch

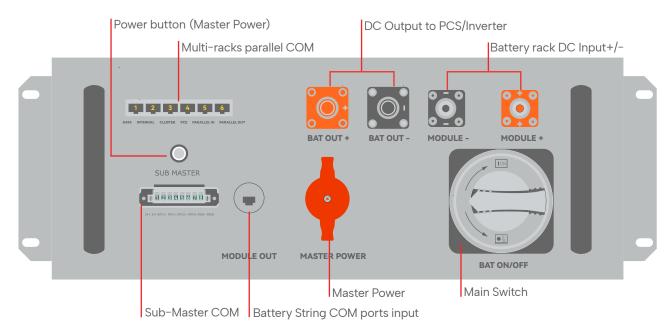
Master Power is a switch that protects the battery modules.


When the BMS detects that the power consumption behavior of loads will cause damage to the battery, such as battery overload, low battery remaining, too low SOC, and others, the master power will automatically rotate to the OFF position—a horizontal state.

Start the battery again.

- 1. Turn the master power back to the vertical state.
- 2. Turn the DC switch to the ON position.

Master BMS


Multi-racks parallel COM

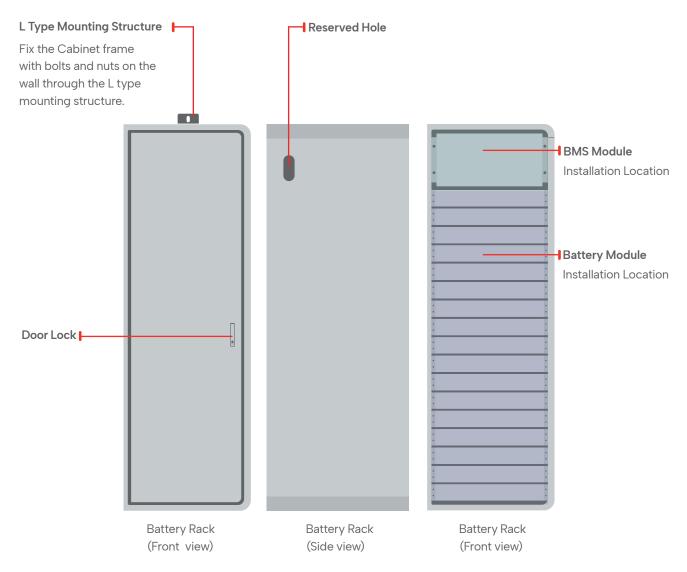
ltem	Terminal	Note
1	DATA	P2-D5: CAN2_L P2-D4: CAN2_H
2	INTERNAL	
3	SERVICE	D-5: CAN0_L D- 1: 485_2B D-6: CAN_L D-3: 485_1B D-4: CAN0_H D-2: 485_2A D-7: CAN_H D-8: 485_1A
4	CLUSTER	C-1: 485_1B C-3: 485_5B C-2: 485_1A C-8: 485_5A
5	PCS	B- 1: 485_1B B-5: CAN0_L B-6: CAN1_L B-2: 485_1A B-4: CAN0_H B-7: CAN1_H
6	PARALLEL	A-6: CAN1_L A-7: CAN1_H

Master COM

ltem	Terminal	Note
1	24+	0.4 / output
2	24-	— 24V output
3	DRY1+	- Dry contact output
4	DRY1-	
5	DRY2+	- Emergency Stop
6	DRY2-	
7	485A	- EMS-485 contact
8	485B	

Sub-Master BMS

Multi-racks parallel COM


ltem	Terminal	Note	
1	DATA	P2-D5: CAN2_L P2-D4: CAN2_H	
2	INTERNAL		
3	CLUSTER-EMS	D-5: CAN0_L D- 1: 485_2B D-6: CAN_L D-3: 485_1B D-4: CAN0_H D-2: 485_2A D-7: CAN_H D-8: 485_1A	
4	PCS	C- 1: 485_1B C-3: 485_5B C-2: 485_1A C-8: 485_5A	
5	PARALLEL-IN	C-5: CAN0_L C-4: CAN0_H	
6	PARALLEL-OUT	B-6: CAN1_L B-7: CAN1_H	

Sub-Master COM

ltem	Terminal	Note
1	24+	
2	24-	—— 24V output
3	DRY1+	—— Dry contact output
4	DRY1-	
5	DRY2+	- Emergency Stop
6	DRY2-	
7	485A	— EMS-485 contact
8	485B	

2.3.4 Cabinet frame

The cabinet frame is the enclosure to mount and secure the battery and Sub-Master BMS module.

2.4 Delivery and storage

Delivery:

1) The device is thoroughly tested and strictly inspected before delivery. Nonetheless, damage may still occur during shipping. For this reason, please conduct a thorough inspection after receiving the device.

2) Contact Wattsonic or the transport company in case of any damage or incompleteness, and provide photos to facilitate services.

Storage:

1) Do not dispose of the original packing case. It is recommended to store the device in the original packing case when the device is decommissioned.

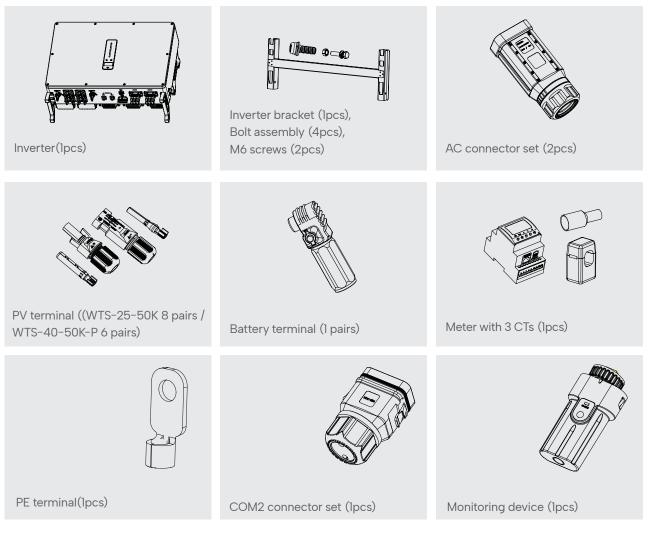
2) The storage temperature and humidity should be between -30 and 60 and less than 90%, respectively.

3) If a batch of inverters needs to be stored, the height of each pile should be no more than 6 levels.

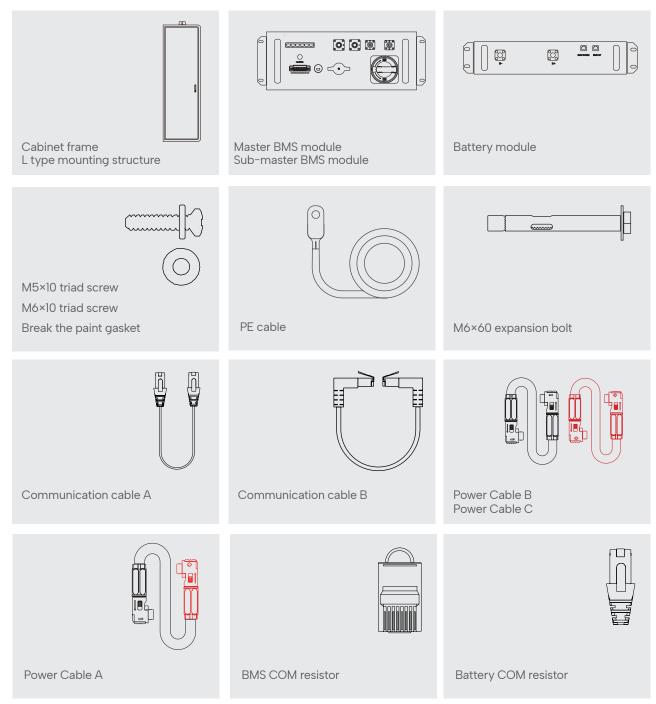
Product Installation

3.1. Installation tool

Caution: All tools used for installing the battery should be insulated or free of exposed metal parts. If not, at least the handle knob must be insulated.


(2) Electric driver Used to fasten the enclosure of a product.

(3) Digital multimeter Used for checking product voltage and insulation.


3.2 Packing list

The package of the inverter includes the following accessories. Please check whether the accessories in the packing box are complete when receiving the goods.

Inverter packing list

Cabinet packing list

3.3 Supported installation environment

3.3.1 Installation location of inverter

The Wattsonic WTS-[25-50kW]-100A-3P series inverters are designed with IP65 protection enclosure for indoor and outdoor installations. When selecting an inverter installation location, the following factors should be considered:

1) The wall on which the inverters mounted must be able to withstand the weight of the inverter.

2) The inverter needs to be installed in a well-ventilated environment.

3) Do not expose the inverter directly to strong sunlight to prevent excessive temperature operation. The inverter should be installed in a place with shelter to prevent direct exposure to sunlight and rain.

4) Install the inverter at eye level for easy inspection of screen data and further maintenance.

5) The ambient temperature of the inverter installation location should be between -30°C and 60°C.

6) The surface temperature of the inverter may reach up to 75°C. To avoid risk of burns, do not touch the inverter while it's operating and inverter must be installed out of reaching of children.

Warning: Do not put flammable and explosive articles around the inverter.

3.3.2 Installation location of cabinet

Caution: Product installation in an inappropriate environment can result in installation problems or product problems.

The wall on which the cabinet is mounted must be strong and can withstand the weight of the cabinet for a long time.

The cabinet needs to be installed in a well-ventilated environment.

Do not expose the cabinet directly to strong sunlight to prevent the power from derating due to excessive temperatures.

The cabinet should be installed in a place with shelter to prevent direct exposure to sunlight and rain.

To avoid risk the cabinet must be installed out of reaching of children.

The area is completely water proof.

The floor is flat and level.

There are no flammable or explosive materials.

The ambient temperature is within the range from 0 to 50.

The temperature and humidity is maintained at a constant level.

There is minimal dust and dirt in the area.

The distance from a heat source is more than 2 meters.

The distance from the air outlet of the whole system is more than 0.5 meters.

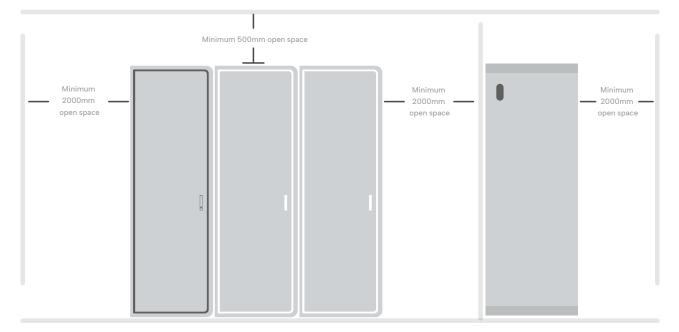
Do not cover or wrap the battery case or cabinet.

Do not place at a children's or pet touchable area.

The installation area shall avoid direct sunlight.

Due to ventilation or airtight requirements, please follow the installation distance requirements (top, left, right, front) on the next page.

User Manual


The aeration shall avoid high salinity, humidity, or temperature.

3.4 Commercial cabinet installation

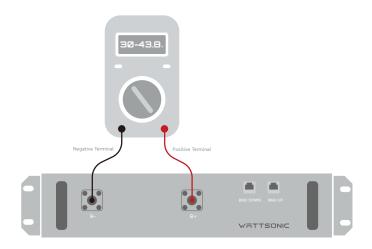
3.4.1 Installation preparation

Choice of installation position

Recommended installation space of single rack / multiple racks:

Pre-installation check

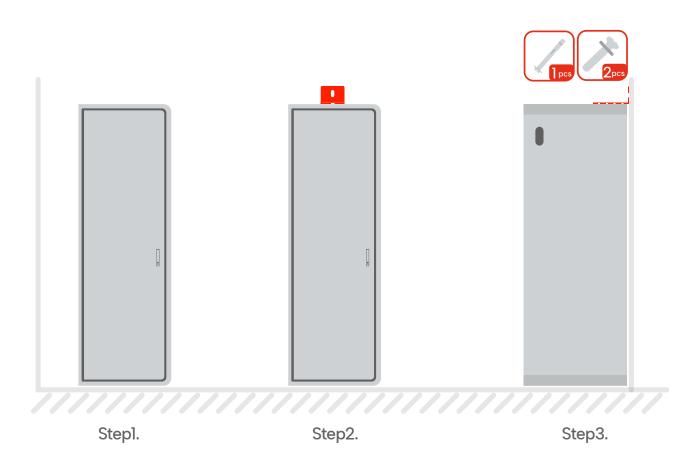
Before proceeding with the installation, pre-check the battery to make sure it is safe.


Use a digital multimeter to measure the voltage between the positive terminal (+) and the negative terminal (-) of the battery module.

The standard voltage shall be between 30V and 43.8V.

しつしつつつつつつつつつつつつつつつつつ

Test Procedure:


Set the multimeter to the DC voltage, connect the red meter to the positive terminal and the black meter to the negative terminal.

User Manual

3.4.2 Single-cabinet installation

(1) Rack installation and fixing Refer to the construction drawing to install the cabinet.

Step1. Place the cabinet on a level stable floor.

Step2. The cabinet can be adjusted as needed from the back wall, and matched with the equidistant holes of the L type mounting structure, and fixed.

Step3. Fix the L type mounting structure and cabinet with one M6×60 expansion bolt on the wall side and two M5×10 triad screws on the cabinet side.

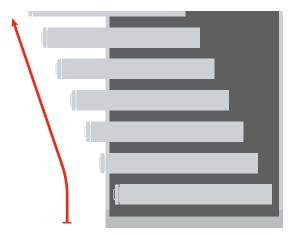
(2) Mounting and securing product

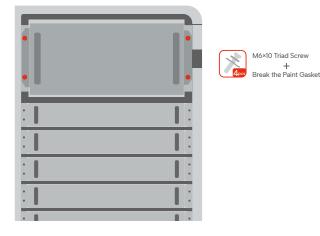
Caution: Please use at least 3-4 people during installation for safety reasons.

Do not mount the module upside down.

Check the module before installation to ensure safety.

Master BMS and Sub-Master ————— Module Installation Location	
Battery Module	· · · · · · · · · · · · · · · · · · ·
Installation Location	


Stepl. Open the door of the cabinet, and put battery module to cabinet carefully.


Installation starts from the bottom to up, install the lowest module first.

Step2. After the module is put into the cabinet, fix it to the cabinet with 4 M6×10 triad screw on both sides. And put a break the paint gasket between each triad screw and module as the figure shown below to enhance electrical conductivity of the whole cabint.

Step3. Install the battery module from bottom to top, and install the Sub-Master BMS in the top of the cabinet, use M6×10 screws and break the paint gasket to secure the Sub-Master BMS to the cabinet.

3.4.3 Multi-cabinet installation

(1) Rack installation and fixing Refer to the construction drawing to install the cabinet.

Stepl. Place the cabinet on a level stable floor.

Step2. The cabinet can be adjusted as needed from the back wall, and matched with the equidistant holes of the L type mounting structure, and fixed.

Step3. Fix the L type mounting structure and cabinet with one M5×10 expansion bolt on the wall side and two M6×60 triad screw on the cabinet side.

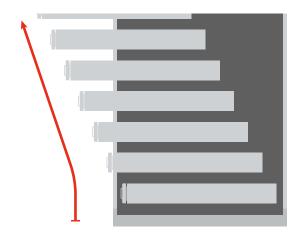
(2) Mounting and securing product

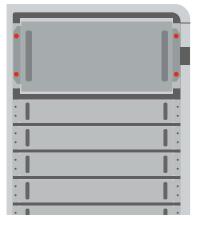
Caution: For safety reasons, please use at least 3-4 people during installation.

Do not mount the module upside down.

Check the module before installation to ensure safety.

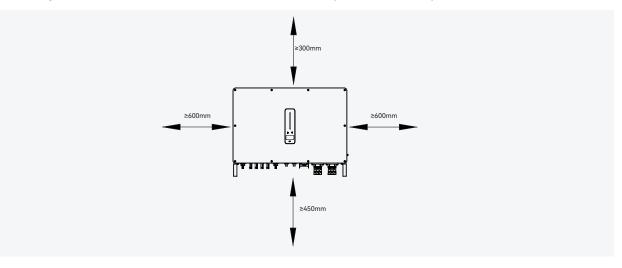
Master BMS and Sub-Master ———— Module Installation Location	
Battery Module	
Installation Location	


Stepl. Open the door of the cabinet, and put battery module to cabinet carefully.

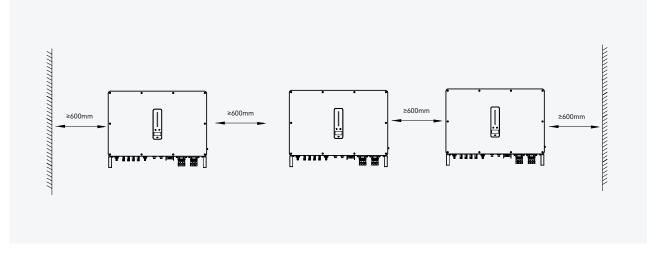

Installation starts from the bottom to up, install the lowest module first.

Step2. After the module is put into the cabinet, fix it to the cabinet with 4 M6×10 triad screw on both sides. And put a break the paint gasket between each triad screw and module as the figure shown below to enhance electrical conductivity of the whole cabint.

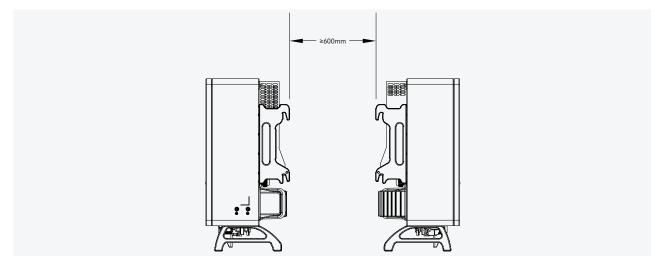
Step3. Install the battery module from bottom to top, and install the Sub-Master BMS in the top of the cabinet, use M6×10 screws and break the paint gasket to secure the Sub-Master BMS to the cabinet.


M6×10 Triad Screw + Break the Paint Gasket

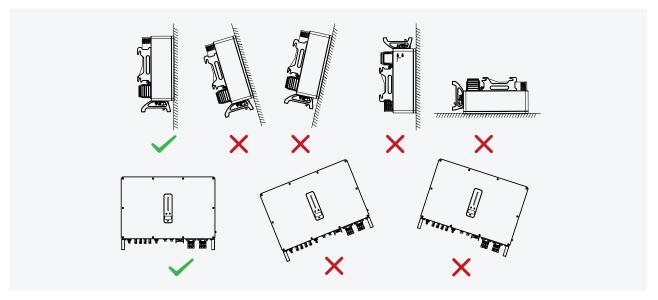
3.5 Inverter installation


3.5.1 Installation preparation

Installation spacing

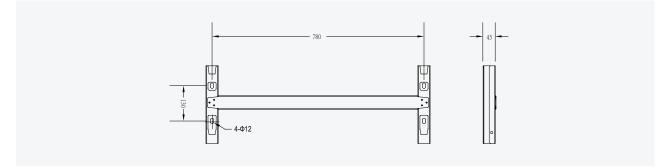

Reserve enough clearance around the inverter to ensure sufficient space for heat dissipation.

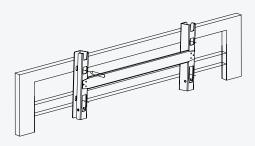
In case of multiple inverters, reserve specific clearance between the inverters.



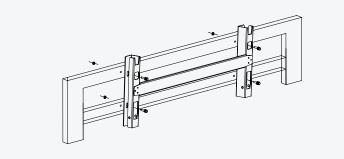
When installing inverters back-to-back, the distance between every two inverters should be at least 600 mm.

Installation angle

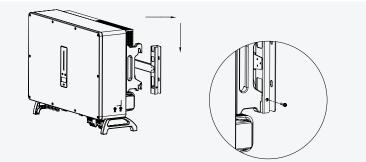

Install the inverter vertically. Never install the inverter horizontally, or at forward/backward tilted, or upside down.


3.5.2 Mounting the inverter

Bracket installation


Dimensions of wall bracket (mm)

1) Level the assembled inverter-bracket by using the level, and mark the positions for drilling holes on the mounting bracket. Drill the holes by using a hammer drill.



2) Secure the inverter-bracket with bolts.

3) Mounting the inverter

Lift the inverter, hang the back rail on the fixed bracket carefully. Secure the inverter with M6 screws (two sides).

Electrical connection

-0

Danger: A high voltage in the inverter's conducting component could result in an electric shock. Please ensure the inverter's AC and DC sides are fully de-energized before installation.

Danger: Do not connect the N-wire to the inverter casing as a protective ground wire. Otherwise, it may cause electric shock.

Warning: Do not ground the positive or negative pole of the PV string. Otherwise, it will cause severe damage to the inverter.

Warning: Static may cause damage to the electronic components of the inverter. Anti-static measures should be taken during installation and maintenance.

Note: Do not use other brands or terminals other than the terminals in the accessory package. Wattsonic has the right to refuse all damages caused by the mixed-use of terminals.

Note: Moisture and dust can damage the inverter, ensure the cable gland is securely tightened during installation. The warranty claim will be invalidated if the inverter is damaged due to a poorly connected cable connector.

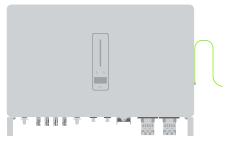
4.1 External ground connection

(1) Ground terminal connection of inverter

Connect the inverter and ground bar through PE wire to achieve the purpose of grounding protection. Please always remember to wire the PE wire before wiring other cables.

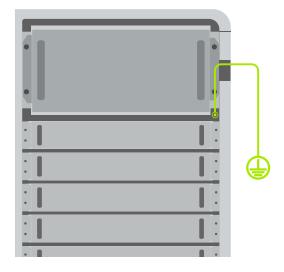
Danger: Do not connect the N-wire to the inverter casing as a protective ground wire. Otherwise, it may cause electric shock.

Note: Reliable grounding is good for resisting surge voltage shock and improving EMI performance.

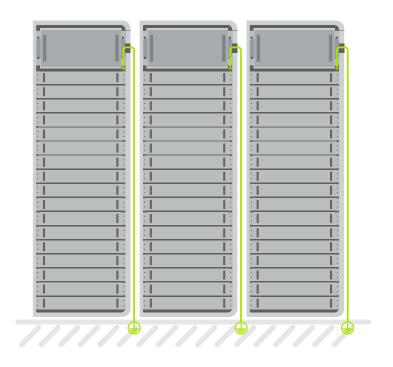

Inverters must be well-grounded.

For a system with only one inverter, just ground the PE cable.

For a multi-inverter system, all inverters PE wire need to be connected to the same grounding copper bar to ensure equipotential bonding.

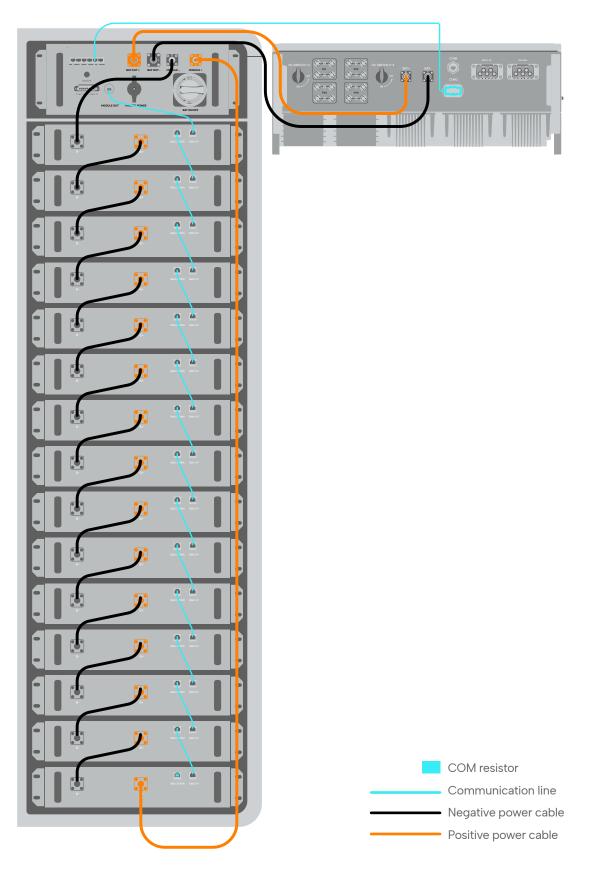

1) The external grounding terminal is located on the inverter's lower right side.

2) Fix the grounding terminal to the PE wire with a proper tool and lock the grounding terminal to the grounding hole in the lower right side of the inverter.


(2) Ground terminal connection of single cabinet

After the cabinet is fixed, connect one of the earth points of the cabinet (side top or bottom) to the PE distribution box. And each cabinet should be connected with a grounding wire.

(3) Ground terminal connection of multi cabinet


After the cabinet is fixed, connect one of the earth points of each cabinet (side top or bottom) to the PE distribution box.

4.2 Connection between BMS and inverter

4.2.1 Single-cabinet

Wiring overview diagram

Communication cables connection

Caution: Connect communication cables as below figure and avoid connecting to other communication ports.

If you change the communication port arbitrarily, the product may be broken.

Use only the provided communication cable.

If the product is used arbitrarily, the product may not operate properly.

The cross cable can be passed throuth the reserved hole on the both sides of the cabinet for a better cable management.

Stepl. Communication cable A

Open the terminal protection cap and use communicaiton cable A to connect "MODULE OUT" port of Sub-Master BMS module with "BMU UP" port of battery module as the red line shown in the figure. And pay attention to the difference between the terminals of the cable.

Step2. Communication cable B

Open the terminal protection cap and use communication cable B to connect the "BMU DOWN" port and "BMU UP" port between battery modules as the blue line shown in the figure.

Step3. Com resistor

Plug into the COM resistor from standard accessories to the open "BMU DOWN" port of the last battery as the blue filled area shown in the figure.

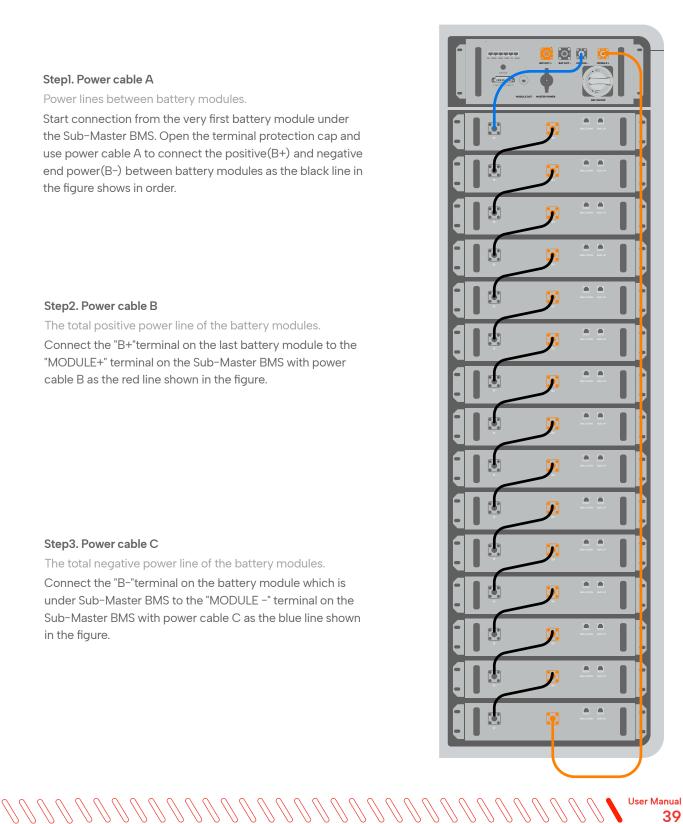
Power cables connection

Warning: 1. Make sure the main switch on the Sub-Master BMS is "OFF" before cables connection.

- 2. At least two people should work on cables connection to ensure accurate and safe operation.
- 3. Please make sure to wear insulating gloves before installation.
- 4. Use insulating tools to connect cables.
- 5. Be careful of external short circuit during connection. Carelessness may cause danger.

Step1. Power cable A

Power lines between battery modules.


Start connection from the very first battery module under the Sub-Master BMS. Open the terminal protection cap and use power cable A to connect the positive(B+) and negative end power(B-) between battery modules as the black line in the figure shows in order.

Step2. Power cable B

The total positive power line of the battery modules. Connect the "B+"terminal on the last battery module to the "MODULE+" terminal on the Sub-Master BMS with power cable B as the red line shown in the figure.

Step3. Power cable C

The total negative power line of the battery modules. Connect the "B-"terminal on the battery module which is under Sub-Master BMS to the "MODULE -" terminal on the Sub-Master BMS with power cable C as the blue line shown in the figure.

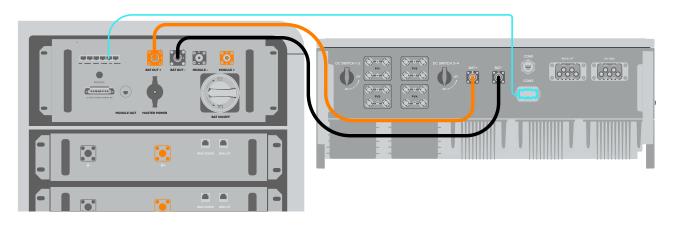
Connection between BMS and Inverter

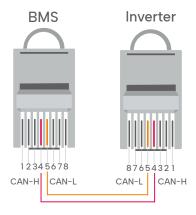
Note: To ensure the safe use of the equipment, please connect the circuit breaker between the PC and the BMS. Ensure there is no power supply before connecting, and use a cable that meets the requirements.

Power Cable:

Connect the BAT OUT+ and BAT OUT- of Master BMS to BAT+ and BAT- of inverter.

Communication Cable:

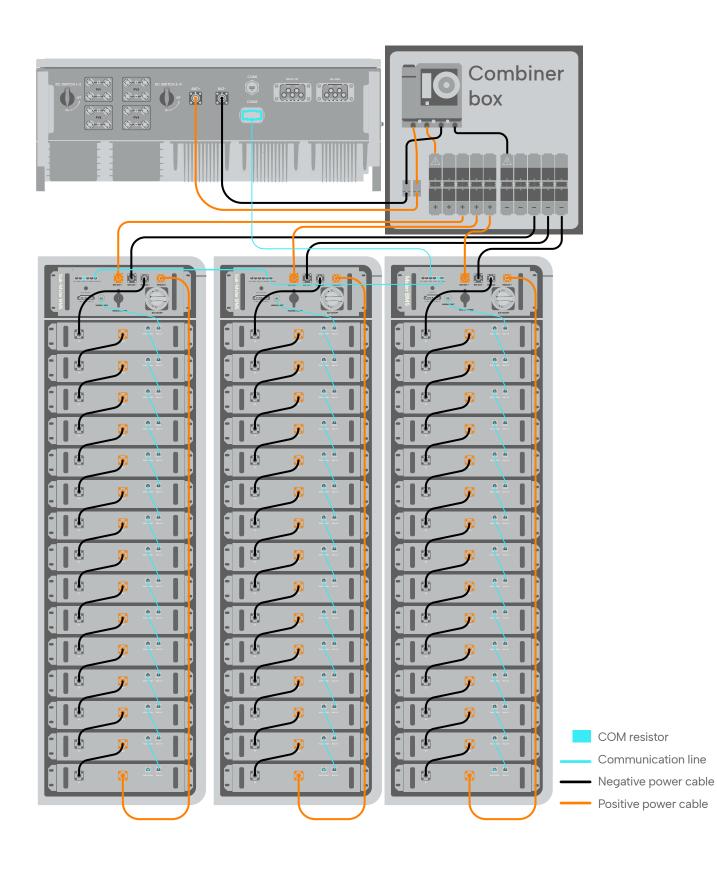

Please refer to page21&22 for Master& Sub-Master BMS terminal definition.


Typel, TCP communication: internal interface, connected to EMS by Ethernet network cable;

Type2, RS485 communication: connection with EMS.

Type3, If connecting CAN COM to hybrid inverter directly, please use PCS port connecting to inverter COM directly according to specific pins defined.

Please refer to the figure to connect.



Please customize the COM cable(RJ45) according to below Rj45 pin definition at BMS and inverter side.

4.2.2 Multi-cabinet

Wiring overview diagram

User Manual **4**]

Multi racks parallel COM connection

Caution: Connect communication cables as below figure and avoid connecting to other communication ports.


If you change the communication port arbitrarily, the product may be broken.

Use only the provided communication cable.

If the product is used arbitrarily, the product may not operate properly.

Stepl. Communication cable A

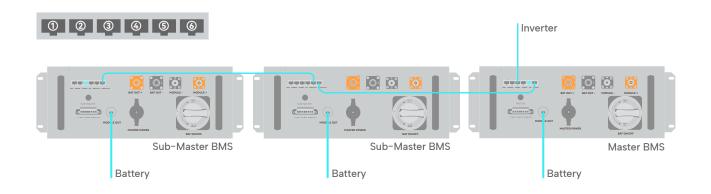
Open the terminal protection cap and use communicaiton cable A to connect "MODULE OUT" port of Sub-Master BMS module with "BMU UP" port of battery module as the red line shown in the figure. And pay attention to the difference between the terminals of the cable.

Step2. Communication cable B

Open the terminal protection cap and use communication cable B to connect the "BMU DOWN" port and "BMU UP" port between battery modules as the blue line shown in the figure.

Step3. Com resistor

Plug into the COM resistor from standard accessories to the open "BMU DOWN" port of the last battery as the blue filled area shown in the figure.



Step4. Communication cable C

Use communication cable C to connect communication between Mater BMS and Sub-Master BMS.

- 1. Connect the (6) "PARALLEL" port of the Master BMS to the (6) "PARALLEL OUT" port of the Sub-Master BMS.
- 2. Connect the ⑤ "PARALLEL IN" port and the ⑥ "PARALLEL OUT" port between the Sub-Master BMS.

3. Plug the COM resistor to the ⑤ "PCS" port of the Master BMS and the ③ "CLUSTER" port of the last Sub-Master BMS.

Power cables connection

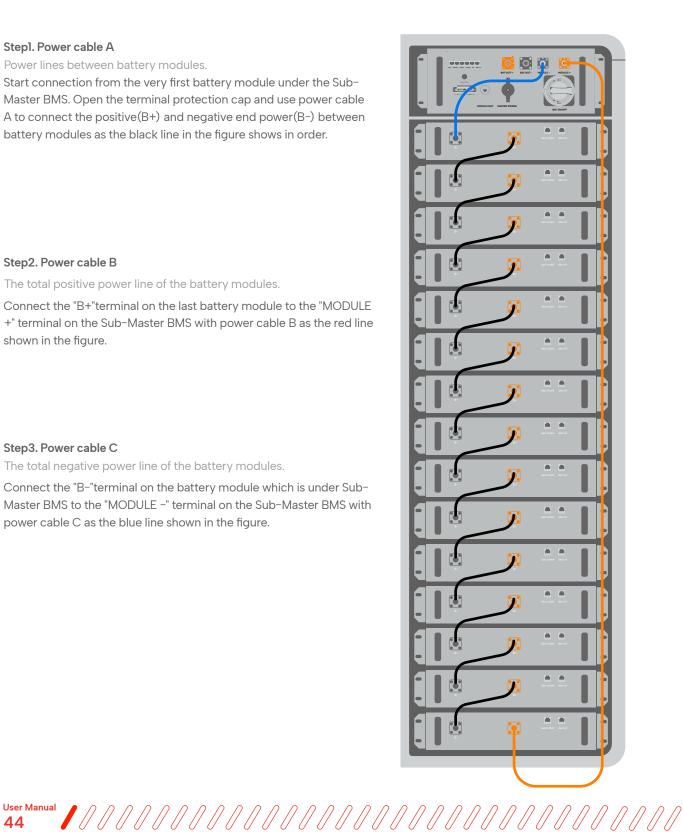
- Warning: I. Make sure the main switch on the Sub-Master BMS is "OFF" before cables connection.
- 2. At least two people should work on cables connection to ensure accurate and safe operation.
- 3. Please make sure to wear insulating gloves before installation.
- 4. Use insulating tools to connect cables.
- 5. Be careful of external short circuit during connection. Carelessness may cause danger.

Stepl. Power cable A

Power lines between battery modules.

Start connection from the very first battery module under the Sub-Master BMS. Open the terminal protection cap and use power cable A to connect the positive(B+) and negative end power(B-) between battery modules as the black line in the figure shows in order.

Step2. Power cable B


The total positive power line of the battery modules.

Connect the "B+"terminal on the last battery module to the "MODULE +" terminal on the Sub-Master BMS with power cable B as the red line shown in the figure.

Step3. Power cable C

The total negative power line of the battery modules.

Connect the "B-"terminal on the battery module which is under Sub-Master BMS to the "MODULE -" terminal on the Sub-Master BMS with power cable C as the blue line shown in the figure.

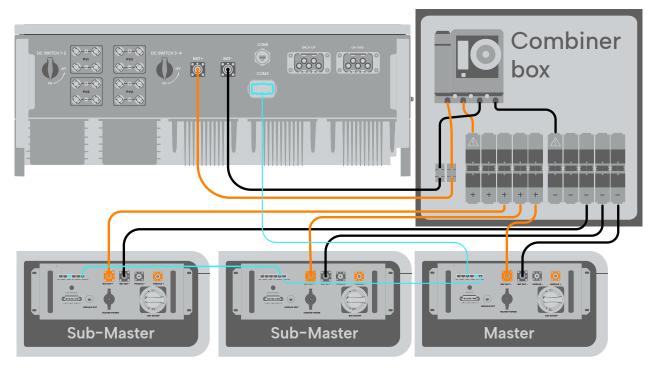
Connection between BMS and inverter

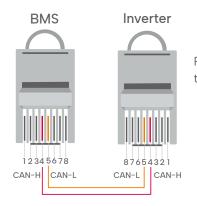
Note: To ensure the safe use of the equipment, please connect the circuit breaker between the PC and the BMS. Ensure there is no power supply before connecting, and use a cable that meets the requirements.

Power Cable:

Connect the BAT OUT+ and BAT OUT- of Master BMS to BAT+ and BAT- of inverter.

Communication Cable:

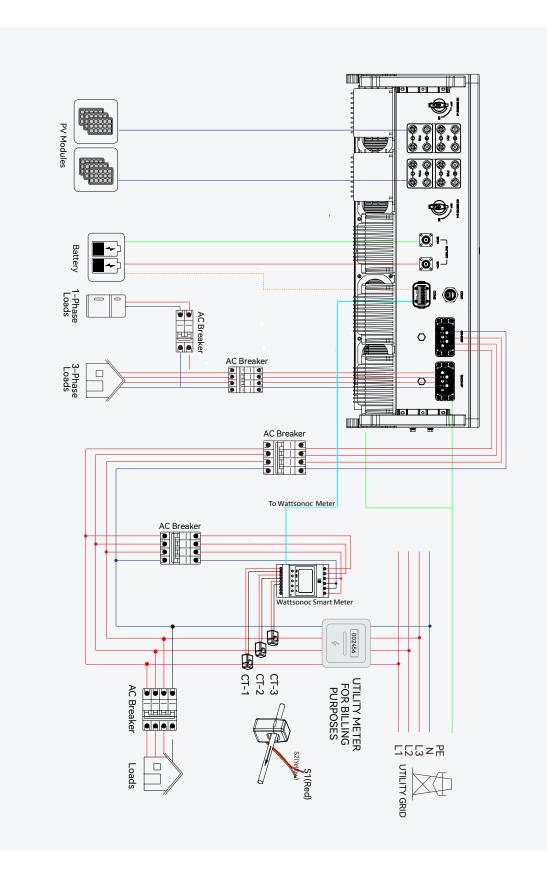

Please refer to page21&22 for Master& Sub-Master BMS terminal definition.


Typel, TCP communication: internal interface, connected to EMS by Ethernet network cable;

Type2, RS485 communication: connection with EMS.

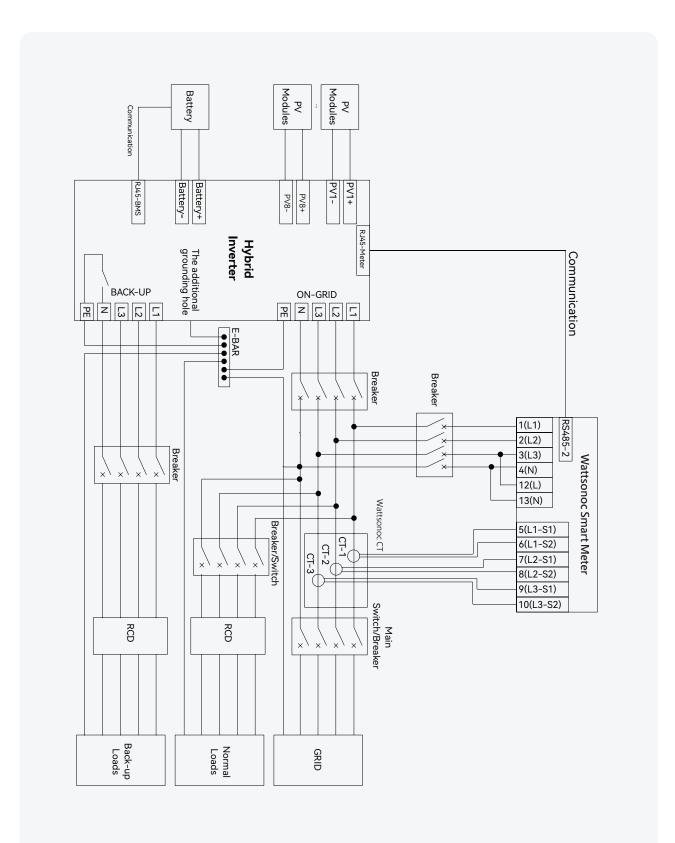
Type3, If connecting CAN COM to hybrid inverter directly, please use PCS port connecting to inverter COM directly according to specific pins defined.

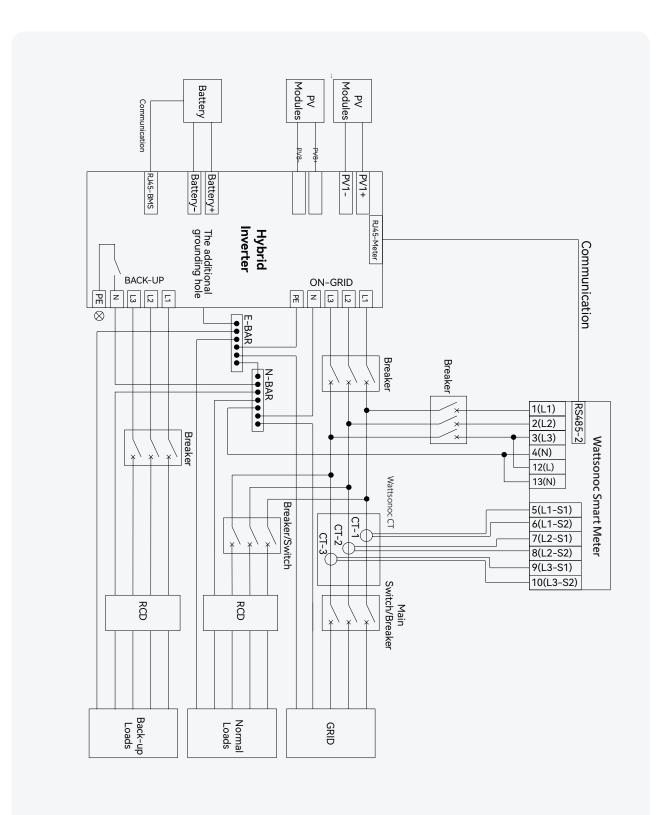
Please refer to the figure to connect.



Please customize the COM cable(RJ45) according to the below RJ45 pin definition at the BMS and inverter.

4.3 Electrical wiring diagram


This diagram shows Wattsonic WTS 25–50K series hybrid inverter wiring structure and composition, concerning the actural project, the installation and wiring have to be in line with the local standards.


Single inverter wiring diagram

This diagram is an example without a special requirement for an electrical wiring connection.

The neutral line of AC supply can be isolated or switched.

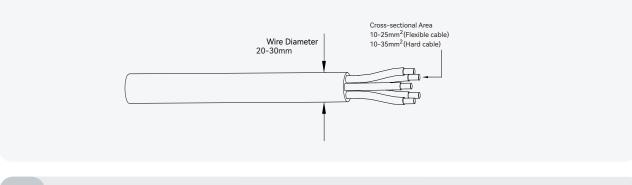
This diagram is an example of Australia and New Zealand. The neutral line of the AC supply must not be isolated or switched, and the neutral cable of the GRID side and BACK-UP side must be connected according to the wiring rules AS/NZS_3000. Otherwise, the BACK-UP function will not work.

User Manual **48**

4.4 Ac Connection

4.4.1 AC side requirements

Note: 1) An independent AC breaker is required in both the on-grid and backup output sides, and any loads cannot directly connect with the inverter.


2) Please confirm that all DC & AC power sources are disconnected from the inverter before connecting the AC cable.

3) The Wattsonic WTS 25–50K series three-phase high voltage hybrid inverter applies to the three-phase power grid with a voltage of 230/400V and a frequency of 50/60Hz.

4) Connect the inverter to the grid only after getting approval from the local electric power company.

A three phase AC breaker needs to be installed on the AC side of the WTS 25–50K. Select a proper overcurrent protection device in compliance with local power distribution regulations and Max to ensure that the WTS 25–50K can safely disconnect itself from the power grid when an exception occurs. Input (output) current of WTS 25–50K AC side.

The allowable AC cable of wire diameter and cross-sectional area for Wattsonic WTS 25-50K are as shown in the following:

Note: Determine whether an AC circuit breaker with greater overcurrent capacity is required based on actual conditions.

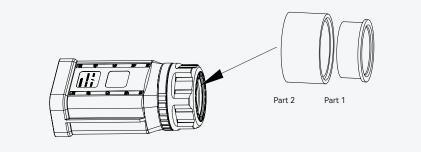
Residual current monitoring device

With an integrated universal current-sensitive residual current monitoring unit, the inverter will disconnect immediately from the mains power once a fault current with a value exceeding the limit is detected.

However, if an external residual current device (RCD) (type A is recommended) is mandatory, the switch must be triggered at the residual current. RCD of other specifications can also be used according to local standards. The recommended residual current is as follows.

Inverter	Recommended residual current
WTS-25K-100	000 4
WTS-30K-100	300mA
WTS-36K-100	360mA
WTS-40K-100	400mA
EWTS-40K-100-P	40011A
WTS-50K-100	F00 A
WTS-50K-100-P	500mA

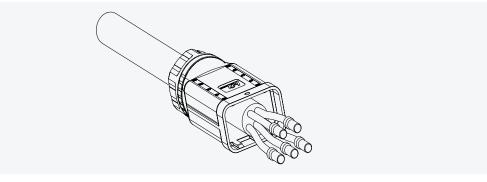
4.4.2 Installing the AC connector


Danger: High voltage may be present in the inverter!Ensure all cables are voltage-free before electrical connection.Do not connect the AC circuit breaker until all inverter electrical connections are completed.

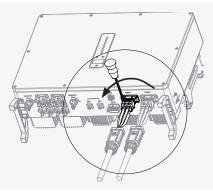
The AC terminal block is on the bottom side of the inverter.

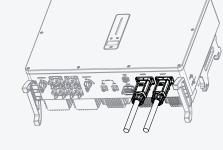
1) Seal accessory option.

The recommended outer diameter of the cable is 20-24 mm and 24.5-30mm.

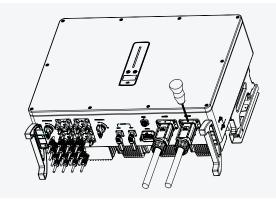

If the outer diameter of the cable is greater than 24mm, remove part 1.

2) According to the figure below select an appropriate cable, peel the insulation sleeve of the AC cable off for 95– 100mm, and peel off the end of 3L /PE / N wires for 15mm.


3) Thread the stripped wire into the lock nut and the main body (the multi-core, multi-strand copper wire cable must be riveted to the cord end terminal).


4) Insert the cable into the rubber core according to the line sequence, observe the perspective hole, the cable is in place, and the torque of the crimping screwdriver is 5 ± 0.1 N.m.

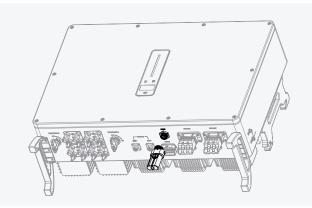
Warning: The cord end terminals must be locked tightly and ensure they won't be loose after a long period of use.


5) Insert the main body into the rubber core and hear the "click" sound, then tighten the nut with an open-ended wrench (torque 10.0±0.1N·m) and complete the installation with a "click, click, click."

4.4.3 Removal the AC connector

1) Hold the unlocking buckle with one hand and rotate it in the marked direction, and rotate the nut in the opposite direction with the other hand.

2) Use a screwdriver to align the unlocking position, press and hold the main body, and pull back to complete the removal.

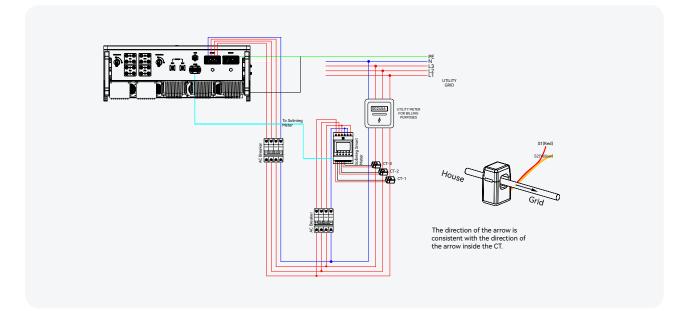


Caution: Please distinguish the on-grid and backup ports, and don't mix up the on-grid and backup ports when making the connection.

4.5 Monitoring device installation

The wattsonic WTS-[25-50kW]-100A-3P hybrid inverter supports WIFI, LAN, and 4G communication.

Plug the WIFI, LAN, or 4G module into the COMI port at the bottom of the inverter. A slight "click" sound during the installation indicates the assembly is in place.


Note: Please refer to "7 Monitoring" for more information.

4.6 Meter and Ct connection

The current Transformer, also called CT, is usually installed on the L wires between the house loads and the power grid.

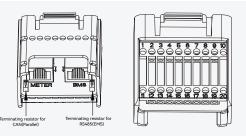
The Meter can be installed in the AC combiner box or other places that are unable to be touched by children. Wattsonic CT cable with a length of 2m is fixed and can not be extended.

The CTs were connected to the Wattsonic Meter when you received them, and you need to follow the wiring diagram in the Meter to join the CT.

0

Notice: CT installation directions should strictly follow the instructions in the user manual. Otherwise, the inverter may not be working.

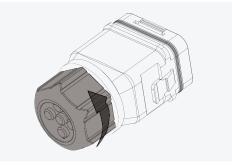
The CT has to correspond with the port in the Meter, and the connection between the CT and the Meter needs to be reliable. Otherwise, the CT measurement accuracy may be affected.


Note: Please choose the appropriate CT size according to your needs.

The definition of Meter terminals as shown in the table below:

No.	Definition	Function
5	L1-S1	
6	L1-S2	
7	L2-S1	
8	L2-S2	To detect the CT current and direction
9	L3-S1	
10	L3-S2	
1	LI	
2	L2	L1/L2/L3/N connect to grid to detect power
3	L3	grid voltage
4	Ν	
12	L	Dower supplied from grid
13	Ν	Power supplied from grid
RS485	RS485	Communicate with inverter

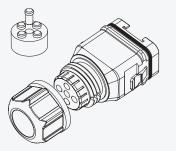
4.7 Communication connection


All communication ports are in the multifunction communication Port at the bottom of the inverter, including the Meter port, CAN port, BMS port, EMS port, RLYOUT port, and DRED port.

Pin	Definition	Function
RJ45-1	RS 485	Communicate with Meter
RJ45-2	CAN	Communicate with BMS
1	СОМ	
2	NO (Normally Open)	Multifunction Relay
3	/	Reserved
4	/	Reserved
5	DRM4/8	
6	DRM3/7	
7	DRM2/6	DRED
8	DRM1/5	For Australia and New Zealand
15	COM D/0	
16	REF D/0	
11	Fast stop +	Foot store
12	Fast stop -	Fast stop
13	485 Bl	EMS
14	485 Al	EMS
17	CANL_P	CAN for parallel connection of inverters
18	CANH_P	CAN for parallel connection of inverters
19	/	Reserved
20	/	Reserved

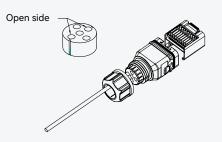
4.7.1 Assembling the multi-COM connector

1) Unscrew the swivel nut from the connector.

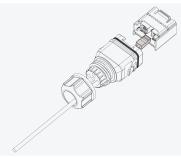


2) Take out the terminal block.

3) Remove the seal and lead the cable through the cable gland.


4.7.2 Connect the Meter and BMS communication cables

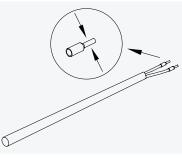
20


Note: The communication between the meter/BMS and inverter is the RJ45 interface cable.

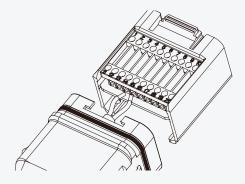
The communication cable of the meter is 10M, and the line of BMS is 3M.

I) Thread the RJ45 plug of appropriate length through the swivel nut, and insert it into the open side of the rubber gasket.

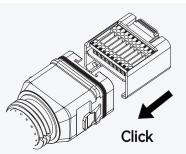
2) Insert one side of the RJ45 plug into the RJ45 port of terminal block.


3) Insert another side of the communication cable into the meter RS485 port or BMS CAN port.

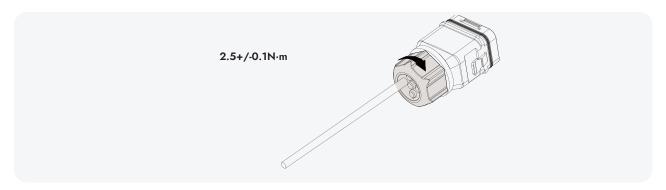
4.7.3 Connect other cables


I) Thread the cable of appropriate length through the swivel nut and the housing. Remove the cable jacket and strip the wire insulation.

2) (Optional) When using a multi-core, multi-strand copper wire cable, connect the AC wire head to the cord end terminal (hand-tight). In the case of single-strand copper wire, skip this step.

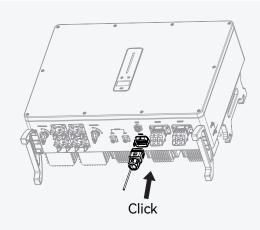


3) Fix all the wires to the terminal plug according to the assignment and tighten to a torque of 1.2+/-0.1N·m with a screwdriver.



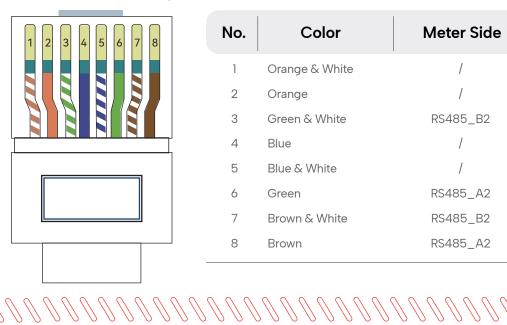
4) Pull the wires outward to check whether they are firmly installed.

Insert the terminal block into the connector until it snaps into place with an audible click.


5) Fasten the swivel nut.

4.7.4 Installing the COM connector

1) Remove the waterproof lid from the COM terminal.


2) Insert the COM connector into the COM terminal on the bottom of the inverter until there is an audible click.

4.7.5 Meter and BMS communication

Note: Before purchasing the battery, you need to ensure the battery you selected is in the battery approval list of Wattsonic; otherwise, the system may not work correctly. If you are unsure, don't hesitate to contact your installer or Wattsonic service team for confirmation.

RJ45 terminal connection sequence and definition as below:

No.	Color	Meter Side	Battery Side
1	Orange & White	/	RS485_A3
2	Orange	/	RS485_B3
3	Green & White	RS485_B2	/
4	Blue	/	CANH_B
5	Blue & White	/	CANL_B
6	Green	RS485_A2	/
7	Brown & White	RS485_B2	/
8	Brown	RS485_A2	/

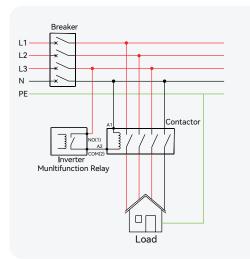
4.7.6 EMS communication

An EMS communication cable needs to be connected to control the operation of a hybrid inverter through the EMS, and communication between EMS and inverter is RS485.

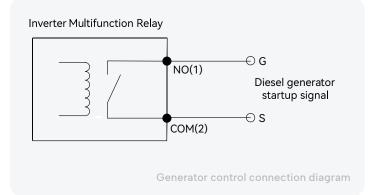
4.7.7 Dred

DRED interface is specially reserved for Australia and New Zealand according to their safety regulation, and Wattsonic doesn't provide the DRED device for the customer.

Note: There is a resistor between 15 (COM D/0) and 16(REF D/0); do not move the resistor while wiring.


4.7.8 Multifunction relay

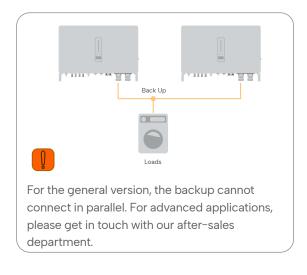
The inverter is equipped with a multifunction dry contact relay, which helps turn the loads on or off when an extra contactor is connected, or startup the diesel generator when the diesel generator startup signal is connected.

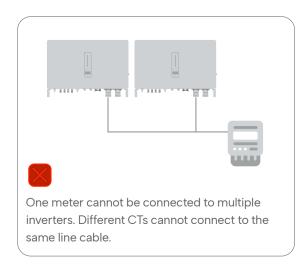

Note: Maximum voltage and current at DO dry contact port: 230VAC 1A/30VDC 1A. **Note**: For more installation and setup information, please contact Wattsonic.

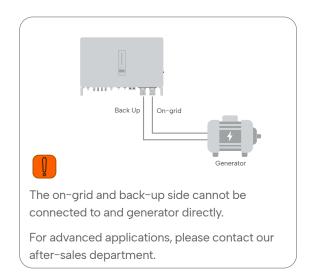
Load control

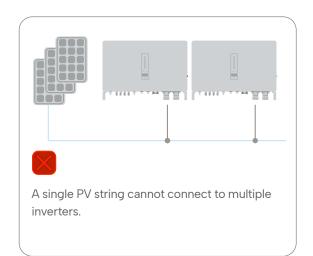
Generator control

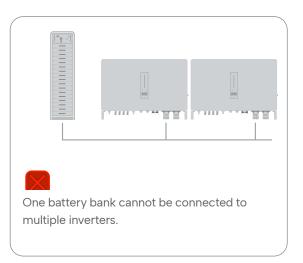
When the "GEN signal" is active, the open contact (GS) will switch on (no voltage output).

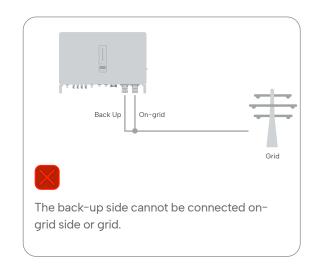



Note: The AC contactor should be placed between the inverter and the loads. Do not connect the load to the DO port directly.


The Wattsonic does not supply the contractor. Connect the load to the DO port of the inverter directly if the load is designed with a DI port.


When the controlled load is connected to ONGRID, the contactor coil must also be connected to ONGRID. When the controlled load is connected to BACKUP, the contactor coil must also be connected to BACKUP.


4.7.9 Parallel system



Note: For more installation and setup information about parallel systems, please contact Wattsonic.

4.8 PV string connection

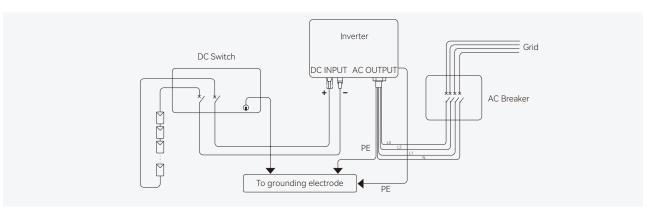
Danger: High voltage may be present in the inverter!

Ensure all cables are voltage-free before performing electrical operations.

Do not connect the DC switch and AC circuit breaker before finishing the electrical connection.

Warning: When the inverter is connected to the battery, the maximum MPPT voltage and operating voltage is 900V.

When the inverter is not connected to the battery, the maximum MPPT voltage and operating voltage is 950V.


Note: For best practice, ensure PV modules of the same model and specifications are connected in each string.

4.8.1 PV side requirements

System layout of units with external DC switch

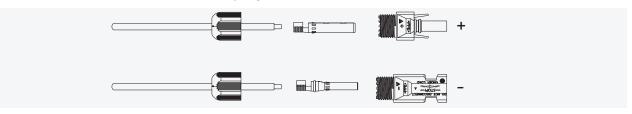
1) Local standards or codes may require PV systems that fit with an external DC switch on the DC side. The DC switch must safely disconnect the open-circuit voltage of the PV array, plus a safety reserve of 20%. Install a DC switch to each PV string to isolate the DC side of the inverter.

2) The DC switch has to be certified by AS 60947.3:2018 and AS/NZS IEC 60947.1:2020 in the Australian and New Zealand markets. The Max. current of the DC switch matching with the WTS-25-50K inverter is no less than 40A. We recommend the following electrical connection.

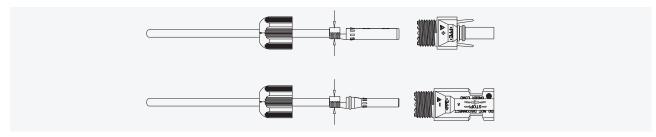
Select the appropriate photovoltaic cable

Cable requirements		
Outside diameter	Conductor core section	Cable stripping length
5.9-8.8 mm	4 mm²	7 mm

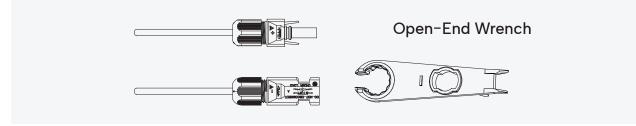
4.8.2 Assembling the PV connector


-0

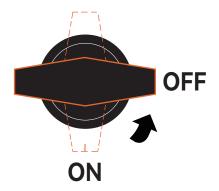
Warning: Before assembling the DC connector, ensure the cable polarity is correct.


1) Peel off the DC cable insulation sleeve for 7 mm.

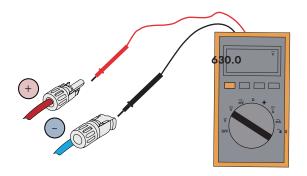
2) Disassemble the connector in the accessory bag.



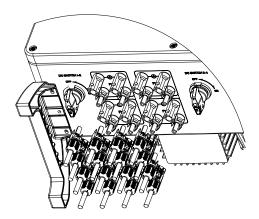
3) Insert the DC cable through the DC connector nut into the metal terminal and press the terminal with a professional crimping plier (pull back the cable with some power to check if the terminal is well connected to the cable).


4) Insert the positive and negative cables into the corresponding positive and negative connectors, and pull back the DC cable to ensure that the terminal is tightly attached to the connector.

5) Use an open-end wrench to screw the nut to the end to ensure that the terminal is well sealed.



4.8.3 Installing the PV connector


1) Rotate the DC switch to the "OFF" position.

2) Check the cable connection of the PV string for polarity correctness and ensure that the open circuit voltage, in any case, does not exceed the inverter input limit of 1,000V.

3) Insert the positive and negative connectors into the inverter DC input terminals respectively, a click sound should be heard if the terminals are well connected.

4) Seal the unused PV terminals with the terminal caps.

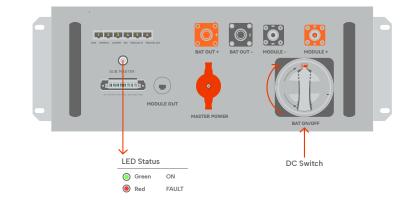
Commissioning and Maintenance

5.1 System start and stop

5.1.1 Startup procedures

Caution: Please refer to the procedure to start the system.

Wrong operation may cause system start-up failure or danger.


Please always keep LVP at RUN position after starting up, or the batteries has high risk of going to flat, LVP is the hardware level protecting of the batteries from over-discharge.

Single rack startup procedure

Stepl. Turn DC Switch from OFF to ON position.

Step2. Waiting the LED indicator flashing green to solid green.

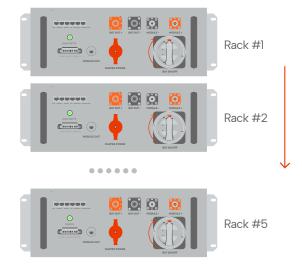
Step3. Startup success.

Multi racks startup procedure

Warning: If turn on Master Power button ON at beginning, the system cannot be able to starting up.

Step 1.

Rack #1:


1. Sub-Master BMS: Turn ON Main DC Switch from OFF to ON position;

••••

Rack #5: 1. Master BMS: Turn ON Main DC Switch from OFF to ON position;

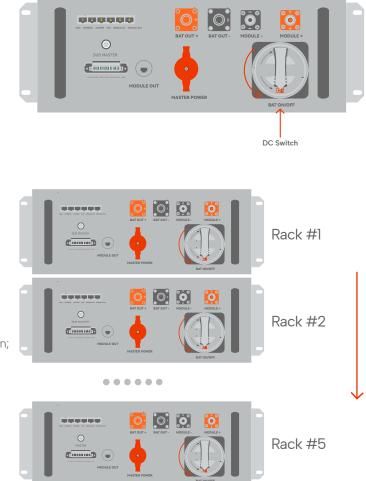
Step 2. Waiting the LED indicator flashing green to solid green.

Step3. Startup success.

User Manual 63

5.1.2 Stop procedures

20


Caution: Observe the suggested maneuver procedure.

Failure to follow the maneuver procedure may result in DC relay failureor Fuse Fail due to inrush current.

Single rack shut down procedure

Check if there is equipment connected to the cabinet, if there is disconnect it first prevent damage caused by power cuts.Check if there is equipment in charge and discharge operation, if there is, stop the process first.

Turn OFF Main DC Switch from ON to OFF position;

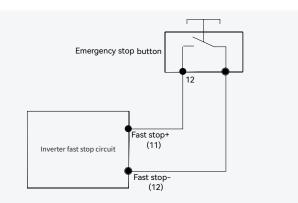
Stepl.

Multi racks shut down procedure

Rack #1

Turn OFF Main DC Switch from ON to OFF position;

...


Rack#5

2. Turn OFF Main DC Switch from ON to OFF position;

Step2. stop success.

5.1.3 Emergency stop function

Wattsonic WTS 25–50K hybrid inverter comes standard with a fast stop function, and you can use this function by connecting an external switch to the Emergency stop interface if required in the installation place. The external controller is not in our accessory box.

5.2 Inverter commissioning

5.2.1 App preparation

1) Install the Local configuration App and Cloud monitoring App with latest version. Refer to "7.2 Cloud monitoring App and 7.3 Local configuration App".

2) Register an account on the Cloud monitoring App. If you have got the account and password from the distributor/ installer or Wattsonic, skip this step.

5.2.2 Inspection

Check the following items before starting the inverter:

- 1) All equipment has been reliably installed.
- 2) DC switch and AC circuit breaker are in the "OFF" position.
- 3) The ground cable is properly and reliably connected.
- 4) The AC cable is properly and reliably connected.
- 5) The DC cable is properly and reliably connected.
- 6) The communication cable is properly and reliably connected.
- 7) The vacant terminals are sealed.
- 8) No foreign items, such as tools, are left on the top of the machine or in the junction box (if there is).
- 9) The AC circuit breaker is selected in accordance with the requirements of this manual and local standards.
- 10) All warning signs & labels are intact and legible.

5.2.3 Commissioning precedures

Please start the inverter for the first time as follows if all items mentioned above meet the requirements.

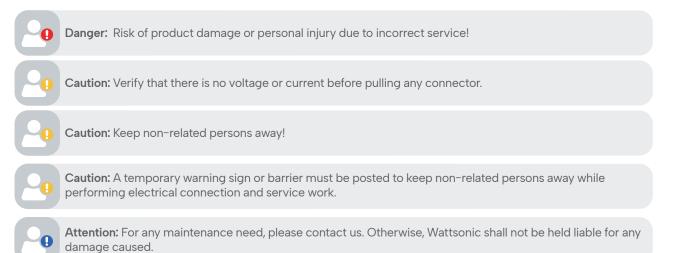
- 1) Turn on the AC breaker.
- 2) Turn on the lithium battery switch. Power on the battery pack manually if a battery is equipped.
- 3) Turn on the DC switch, the DC switch may be integrated in the inverter or installed by the customer.
- 4) The inverter will work adequately after turning on the DC and AC breakers, depending on whether the weather and grid meet requirements. The time for entering the operating mode may vary according to the chosen safety code.
- 5) Observe the LED indicator to ensure that the inverter operates normally.

6) After the inverter is started, please refer to the [QUICK USE GUIDE] which is attached to the access to configure the inverter.

- Note: If the inverter does not work properly, check the country code and battery ID Settings.
- 1) Select the safety code suitable for the country (region) where the inverter is installed at.
- 2) Select the battery ID suitable for the battery is installed.

Note: CT AUTO TEST FUNCTION

WTS hybrid inverter has the function of detecting the installation direction and phase sequence of CT. The system is installed, this function can be enabled on the APP for detection.



Note: SOC RESET FUNCTION

When the inverter is turned on for the first time, the battery will be automatically charged to calibrate the battery SOC. After the battery is charged, this function will be turned off automatically (If you confirm that it is not necessary, you can manually turn off the function. We recommend to enable this function.)

If you need to calibrate the SOC during system use, you can manually enable the function to calibrate the battery SOC on app or inverter screen. After the battery is fully charged, the function is automatically disabled again.

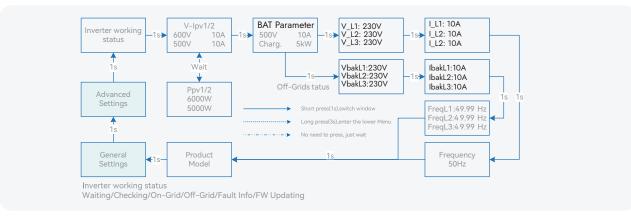
5.3 Maintenance

Note: Servicing of the device in accordance with the manual should never be undertaken in the absence of proper tools, test equipment or the latest revision of the manual which has been clearly and thoroughly

of proper tools, test equipment or the latest revision of the manual which has been clearly and thoroughly understood.

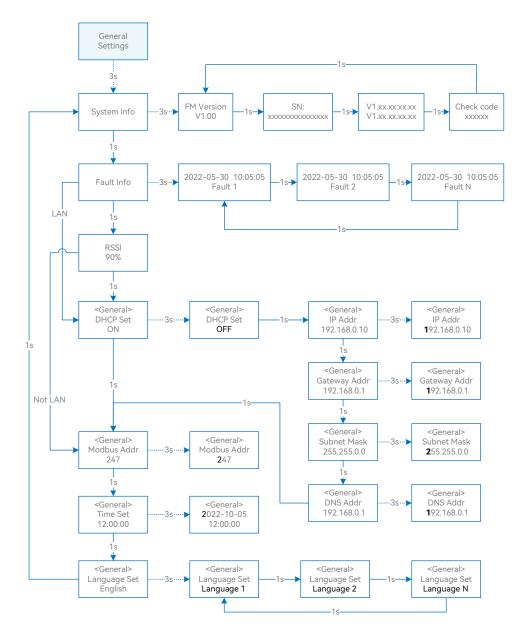
ltems	Methods	Period
System clean	Use a soft dry cloth to clean the product. If the surface is dirty, use a soft cloth lightly moistened with water.	
	Do not clean the battery terminals when wet. Do not use volatile liquid when cleaning the product.	Six months to a year (it depends on the dust contents in air.)
	When cleaning the cabinet room, shut down all systems before cleaning.	

Inverter Operation


When the inverter is turned on, the following interfaces will be displayed on the OLED display, and the OLED display allows the user to check various operation information and to modify the settings of the inverter.

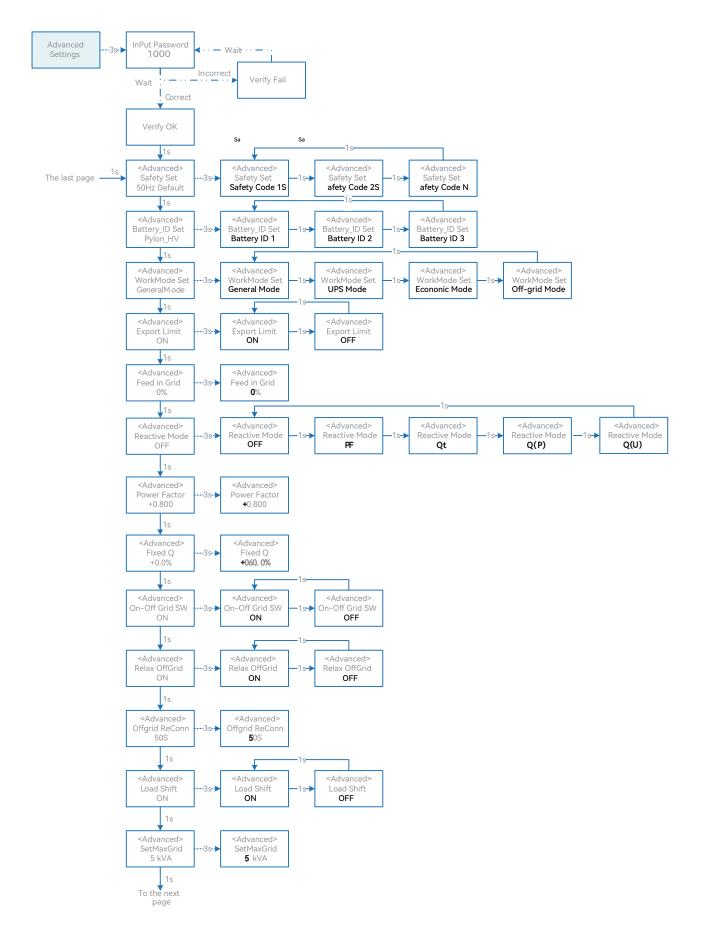
Note: If the parameter is a number short press to change the number, long press to confirm the number and jump to the next number.

Please wait for 10 seconds and the inverter will automatically save your settings or modifications.


6.1 Main window

Inverter Display Abbreviation and Complete Name Reference Table

Abbreviation	Complete Name
V-lpv1/2	PV input voltage and current of each MPPT
Ppvl/2	PV input power of each MPPT
BAT Parameter	Battery Parameter
Charg.	Charge
Disch.	Discharge
V_L1: / V_L2: / V_L3:	Three-phase AC voltage (On-Grid status)
VbakL1: / VbakL2: / VbakL3:	Three-phase AC voltage (Off-Grid status)
I_L]: / I_L2: / I_L3:	Inverter output current (On-Grid status)
lbakL1: / lbakL2: / lbakL3:	Inverter output current (Off-Grid status)
FreqL1: / FreqL2: / FreqL3:	Inverter output Frequency (Off-Grid status)
FW Updating	Firmware Updating


6.2 General setting

Inverter Display Abbreviation and Complete Name Reference Table

Abbreviation	Complete Name
System Info	System information
FM Version	Firmware version
SN	Series number
Fault Info	Fault information
RSSI	Received signal strength indicator
DHCP Set	Enable or disable DHCP functionality
IP Addr	If DHCP is turned off, set the static IP address
Gateway Addr	If DHCP is turned off, set the Gateway IP address
Subnet Mask	If DHCP is turned off, set the subnet mask
DNS Addr	If DHCP is turned off, set the domain name server address
Modbus Addr	Modbus address

6.3 Advanced setting

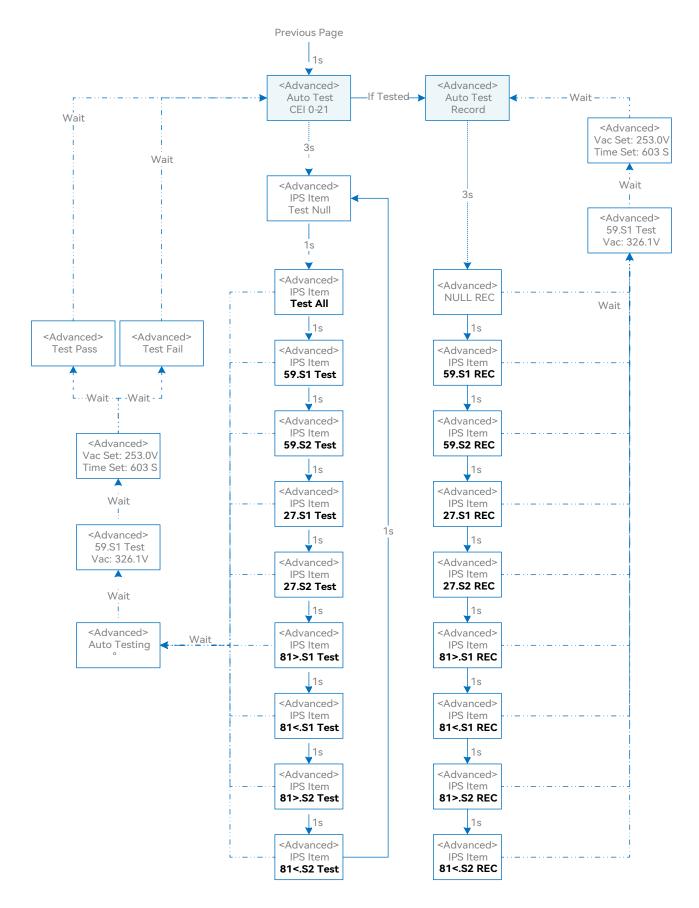
Inverter display abbreviation and complete name reference table

Abbreviation	Complete Name
Safety Set	Select the code that meet local regulatory requirements
Battery_ID Set	Select the battery model
Work Mode	Current work mode / work mode setting
Export Limit	On-grid export limit function switch
Feed in Grid	Set the percentage of the power that is allowed to feed to the grid
Reactive Modes	Reactive Power Mode
PF	"Under ""Reactive Mode" "The reactive power can be regulated by the parameter PF (Power Factor)."
Qt	"Under ""Reactive Mode" "The reactive power can be regulated by the parameter Q-Var limits (in %)."
Q(P)	"Under ""Reactive Mode" "The PF changes with the output power of the inverter."
Q(U)	"Under ""Reactive Mode" "The reactive power changes with the grid voltage"
Fixed Q	The reactive power ratio when the "Reactive Mode" is Qt.
On-Off Grid SW	Off-grid function switch (If turn it on, the inverter will automatically switch to off-grid mode to ensure the back-up side power supply when the gird is abnormal or off, otherwise, there is no output on the back-up side)
Relax OffGrid	Reduce the switching sensitivity of the On/Off-grid (applied to the places where the grid is unstable or inverter always entered off-grid mode for some reasons)
Offgrid ReConn.	When the power grid is off, the inverter can automatically restart the back-up output after a fault or overloading protection occurred if the Off-grid restart is ON. Otherwise, the back-up output needs to be restarted manually
Load Shifting	Peakload shifting function switch
SetMaxGrid	Set max allowed power from grid (under the condition of Peakload Shifting is on)
OnGrid SocProt.	On-grid battery SOC (State of Charge) Protection
OnGrid EndSOC	End-of-discharge SOC of on-grid
OffGrid SocProt.	Off-grid SOC Protection
OffGrid EndSOC	End-of-discharge SOC of off-grid
Unbalan. Output	3-Phase Unbalanced Output Switch when inverter work on On-grid state
System Maint.	System maintenance, includes inverter stop and run, system restart
Multi-INV Role	In the multi-inverter parallel system, set the role of one inverter as the master and the other inverter as the slave.
SOC Reset	If turned it on, the battery will be automatically charged to calibrate the battery SOC. After the battery is charged, this function will be turned off automatically .
MPPT Parallel	If MPPT is connected in parallel, enable this function.

Abbreviation	Complete Name
MaxOutputSet	Select the maximum AC output power.
	Rated, Max. output power= Rated output power on the datasheet
	Overload, Max. output power= Max. output power on the datasheet
	Limit, Max. output power< Rated output power on the datasheet
Export Control	In the power export limit on mode, when the communication between the inverter and meter or the inverter and datalogger is interrupted, select the inverter operation mode from one of the follows:
	Hard, inverter stops
	Soft, inverter generates power as the "Feed in Grid" value set on the screen
N-PE Check	The N and PE shorting function on the BACK-UP side in the off-grid operation status.
CommsWatchDog	When the function is turned on, the inverter stops working when communication with the master is lost.

6.4 Country code (safety code) setting

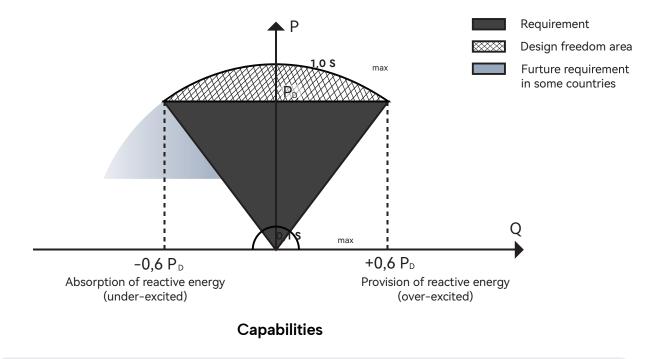
Please set "Country code (Safety code)" under the menu "Safety Set" in " Advanced Settings ".


Refer to "7.3 Advanced Setting" for more information.

6.5 Auto-test

This function is disabled by default, and will be only functional in the safety code of Italy. Short press the button several times until "Auto Test CEI 0–21" displays on the screen, press and hold the button 3 seconds to activate "Auto Test". After the auto test is finished, short press the button several times until the screen displays "Auto Test Record", and hold the button 3 seconds to check the test results.

The auto test will start when the correct test item is selected, and the test result will be displayed on the screen when it finished. If the test was successful, it will display "Test Pass", otherwise will display "Test Fail". After each item tested, the inverter will reconnect to the grid and automatically start the next test according to the requirements of CEI 0–21.


Connect the AC cable, auto test will start after the inverter connected to the grid, see the operation steps below:

へいいいい しんしん いんしん しんしん しんしん しんしん

User Manual

6.6 Reactive power

Mode	Descriptions
Off	The PF is fixed at +1.000.
PF	The reactive power can be regulated by the parameter PF (Power Factor).
Qt	The reactive power can be regulated by the parameter fixed Q(in Pn%).
Q(P)	The PF changes with the output power of the inverter.
Q(U)	The reactive power changes with the grid voltage.

6.6.1 "Off" modes

The power factor is fixed and reactive power setpoint is calculated according to the current power. The PF ranges from 0.8 leading to 0.8 lagging.

Leading: the inverter is sourcing reactive power to the grid.

Lagging: the inverter is injecting reactive power into the grid.

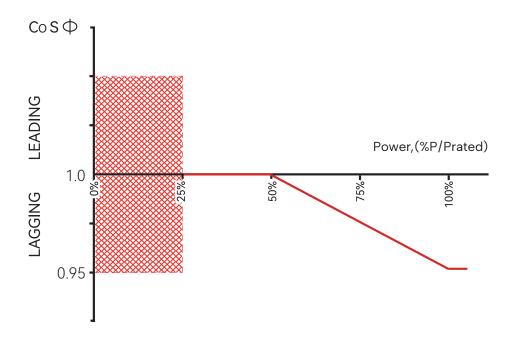
6.6.2 "PF" mode

The reactive power regulation function is disabled. The PF is limited to +1.000.

6.6.3 "Qt" mode

In the Qt mode, system rated reactive power is fixed, and the system injects reactive power according to the delivered reactive power ratio.

The setting range of the reactive power ratio is 0–60% or 0––60%, corresponding to the ranges of inductive and capacitive reactive power regulation respectively.

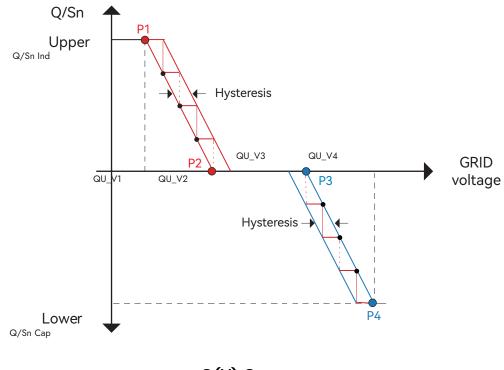


6.6.4 "Q(P)" mode

The PF of the inverter output varies in response to the output power of the inverter.

"Q(P)" Mode Parameter Descriptions:

Parameter	Explanation	Range
QP_P1	Output power at P1 on the $Q(P)$ mode curve (in percentage)	10% ~ 100%
QP_P2	Output power at P2 on the Q(P) mode curve (in percentage)	20% ~ 100%
QP_P3	Output power at P3 on the $Q(P)$ mode curve (in percentage)	20% ~ 100%
QP_K1	Power factor at P1 on the Q(P) mode curve	
QP_K2	Power factor at P2 on the Q(P) mode curve	0.8 ~1
QP_K3	Power factor at P3 on the Q(P) mode curve	
QP_Enter-Voltage	Voltage percentage for $Q(P)$ function activation	100% ~ 110%
QP_Exit-Voltage	Voltage percentage for $Q(P)$ function deactivation	90% ~ 100%
QP_Exit-Power	Power percentage for $Q(P)$ function deactivation	1% ~ 20%
QP_Enable-Mode	Unconditional activation/deactivation of $Q(P)$ function	Yes / No



Q(P) Curve

6.6.5 "Q(U)" mode

The reactive power output of the inverter will vary in response to the grid voltage. "Q (U)" Mode Parameter Descriptions:

Parameter	Explanation	Range
Hysteresis Ratio	Voltage hysteresis ratio on the Q(U) mode curve	0 ~ 5%
QU_V1	Grid voltage limit at P1 on the $Q(U)$ mode curve	80% ~ 100%
QU_Q1	Value of $\ensuremath{Q}\xspace/Sn$ at Pl on the $\ensuremath{Q}\xspace$ (U) mode curve	-60% ~ 0
QU_V2	Grid voltage limit at P2 on the $Q(U)$ mode curve	80% ~ 110%
QU_Q2	Value of Q/Sn at P2 on the Q (U) mode curve	-60% ~ 60%
QU_V3	Grid voltage limit at P3 on the $Q(U)$ mode curve	100% ~120%
QU_Q3	Value of Q/Sn at P3 on the Q (U) mode curve	-60% ~ 60%
QU_V4	Grid voltage limit at P4 on the $Q(U)$ mode curve	100% ~120%
QU_Q4	Value of Q/Sn at P4 on the $Q(U)$ mode curve	0~60%
QU_Enter-Power	Active power for $Q(U)$ function activation	20% ~ 100%
QU_Exit-Power	Active power for $Q(U)$ function deactivation	1% ~ 20%
QU_Enable-Mode	Unconditional activation/deactivation of $Q(U)$ function	Yes/No/Yes, Limited by F

Q(U) Curve

Monitoring

7.1 Monitoring device

	Indicator Status	Description
	Off	Connection abnormal
Indicator	Always On	Communicate with the server normally
	Slow flashing	The monitoring device is not connected to the router or is not connected to the base station.
	Quick flashing	The monitoring device is connected to the router or connected to the base station but not connected to the server.
	Button	Description
Button	Button Press 1 second	Description Reset device, the indicator goes off for 2 seconds, then flashes normally.

Note: The WiFi module must be configured to the router in the first installation. If the router name or password are changed, the WiFi devices will need to be reconfigured. For details, please refer to the [QUICK USE GUIDE] attached to the accessory bag.

If DHCP is enabled on the router, the LAN version module does not need to be configured. Otherwise, please refer to the [QUICK USE GUIDE] attached to the accessory bag.

7.2 Cloud monitoring app

Wattsonic inverter provides a monitoring port that can collect and transmit data from the inverter to the Wattsonic monitoring platform via an external monitoring device. Please refer to the product nameplate on the side of the enclosure to get the monitoring application. If download issues exist, contact your dealer or Wattsonic technical support.

7.3 Local configuration app

The local configuration App is designed to quickly configure Wattsonic hybrid inverters, offering features such as safety code, battery brand and type, work modes, and off-grid application settings through WiFi direct connection, etc.

Please refer to the product nameplate on the side of the enclosure to get the application. If download issues exist, contact your dealer or Wattsonic technical support.

Troubleshooting

8.1 Error message

Wattsonic WTS-[25-50kW]-100A-3P series hybrid inverter is designed following grid operation standards and conforms to the requirements of safety and EMC. The inverter had passed rigorous tests to ensure it ran sustainably and reliably before shipment.

When a fault occurs, the corresponding error message will be shown on the OLED display, and in this case, the inverter might stop feeding into the grid. The fault messages and their corresponding troubleshooting methods are listed below:

Error Message	Description	Solution
Mains Lost	Grid power outage, AC switch or	1. Check whether the mains supply is lost.
	circuit is disconnected.	2. Check whether the AC breaker and termina are well connected
Grid VoltageFault	Inverter detects that the gird	1. Check whether the safety code is correct.
	voltage exceeds the limit of selected safety set range.	2. Check whether the AC cable wiring is correct.
		3. Check whether the voltage increased cause by large AC cable impedance. In this case we could replce with a thicker AC cable.
		4. Extend the voltage protection limit with the permission of the electricity authority
Grid Fre quency Fault	Grid overvoltage or undervoltage, the grid voltage is higher or lower	1. Check whether the AC cable is correct and well connected.
than the set protection value.		2. Change to another country with wider protection range if it's allowed by the local electricity company
DCI Fault	Inverter detects that the gird	1. Restart the inverter.
	voltage exceeds the limit of selected safety set range.	2. Seek for help from the installer or manufacture.
ISO Over Limitation	Inverter detects that DC side's insulation impedance to the	1. Check whether PV panels, cables, and connectors are waterlogged or damaged.
	ground is too low.	2. Use a megger to measure ground resistanc on the DC sidel, and the measured value shou not be less than 500 KΩ.
		3 Seek help from the installer or manufacture

3. Seek help from the installer or manufacture.

Error Message	Description	Solution
GFCI Fault	The inverter detects that the ground leakage current exceeds	1. Restart the inverter. 2. Check whether the PV panels, cables, and
	the limitation.	connectors are waterlogged or damaged.
		3. Seek help from the installer or manufacture.
PV Over Voltage	PV input voltage exceeds the upper limit.	Reduce the number of PV panels to make sure that the open-circuit voltage of each string is lower than the inverter maximum allowed input voltage.
Bus Voltage Fault	The voltage of bus circuit is too high	1. Check whether the input voltage exceeds the limit.
		2. Restart the inverter.
		3. Seek help from the installer or manufacture.
Inverter Over Temperature	The inverter detects its high internal temperature	1.Check whether the inverter installation location is well ventilated.
		2.Try to turn it off for a while, and then power it back on when it cools down.
		3.Seek help from the installer or manufacture.
N-PECheck Fault	The ground cable is losse or in poor connection	Check whether the ground cable wiring is correct.
SPI Fault	Internal communication got	1. Restart the inverter.
	failed. Caused by a strong external magnetic field etc.	2. Seek for help from the installer or manufacture.
E2 Fault	Internal storage got abnomal.	1. Restart the inverter.
	Caused by a strong external magnetic field etc.	2. Seek help from the installer or manufacture.
GFCI De vice Fault	GFCI device got abnormal	1. Restart the inverter.
		2. Seek for help from the installer or manufacture.
AC Transducer Fault	AC transducer got abnomal	1. Restart the inverter.
		2. Seek for help from the installer or manufacture.
Relay Check Fail	Self-checking of internal relay got failed. Neutral & ground	1. Use multimeter to measure the voltage between N&PE cable on AC side. If the voltage is higher than 10V, which means the neutral or

Error Message	Description	Solution
	cable are in poor connection on AC side.	ground connection is abnormal.
	AC SIDE.	2. restart the inverter.
		3. Seek help from the installer or manufacture.
Internal Fan Fault	Inverter's internal fan got failed	1. Restart the inverter.
		2. Seek for help from the installer or manufacture.
External Fan Fault	Inverter's external fan got failed	Check whether the fan is blocked by foreign matters, clean them if necessary.
Bat OV	Battery protection got triggered	1. Check working status of battery.
		2. Check if battery is alarming.
Backup OV	Abnormal voltage exists on the	Turn off inverter and remove the back-up
	back-up side	connector. Use a multimeter to measure whether there is voltage existing on the back- up connector.
Bus Volt Low	Abnormal power schedduling	Check whether the battery voltage or PV input voltage is normal
Hard Fault	Hardware protection got	1. Restart the inverter.
	triggered	2. Seek help from the installer or manufacture.
Backup OP	Output power over limitation on back-up side	Check whether the load power on back-up side exceeds the maximum output power of inverter.
Inverter OV	The load power exceeds the range of its limit of inverter in off- gird mode	l. Check whether there is an impact load on the back-up side and whether the load power is too high.
		2. Check whether back-up side is short circuit.
Inverter OF	The load power exceeds the range of its limit of inverter in off-gird mode	 Check whether there is an impact load on the back-up side and whether the load power is too high.
		2. Check whether back-up side is short circuit.
		 Check whether there is an impact load on the back-up side and whether the load power is too high.

80 Voer Manual

Error Message	Description	Solution
Inverter OC	The load power exceeds the range of its limit of inverter in off-gird mode	2. Check whether back-up side is short circuit.
SCI Fault	Internal communication got failed.	1. Restart the inverter.
	Caused by a strong external magnetic field etc.	2. Seek for help from the installer or manufacture.
FLASH Fault	Internal storage anomaly. Caused	1. Restart the inverter.
	by a strong external magnetic field etc.	2. Seek for help from the installer or manufacture.
Meter Comm Fault	Abnormal communication between meter and inverter.	 Check whether the communication connection between inverter and meter is reliable
		2. Comfirm whether the meter model is compatible
B M S Comm Fault	Abnormal communication between inverter and battery	1. Check whether the battery ID selection is correct.
	BMS.	2. Check whether the communication connection between inverter and BMS is reliable
		3. Check the working status of battery.

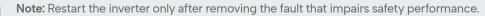
8.2 Inverter maintenance

Danger: Risk of inverter damage or personal injury due to incorrect service!

Remember that the inverter is powered by three sources: PV strings, battery, and utility grid.

Before any service work, observe the following procedure.

- 1) Shut off the inverter through the APP or the button on the display first.
- 2) Disconnect the breakers on the grid and load side.
- 3) Turn off the battery switch and disconnect the DC breaker on the battery side (if any).


4) Wait 30 seconds and turn the inverter DC switch to the "OFF" position. At this time, there is remaining power in the inverter capacitor. Wait for 10 minutes until the inverter is completely de-energized before operating.

5) Verify there is no voltage or current before pulling any connector.

2

Caution: Keep non-qualified persons away!

A temporary warning sign or barrier must be posted to keep non-qualified persons away while performing electrical connection and service work.

Never arbitrarily replace any internal components.

For any maintenance support, please get in touch with Wattsonic. Otherwise, Wattsonic shall not be held liable for any damage caused.

Note: Servicing of the device in accordance with the manual should never be undertaken in the absence of proper tools, test equipment or the latest revision of the manual which has been clearly and thoroughly understood.

ltems	Methods	Period
System clean	heck the temperature and dust of the inverter.	Six months to a year (it depends on the dust contents in air.)
	Clean the inverter enclosure if necessary.	
	Check if the air inlet and outlet are normal.	
Electrical connection	Check whether there is damage to the cables, especially the surface in contact with metal.	6 months after commissioning and then once or twice a year.

8.3 Battery maintenance

Installation and maintenance of batteries should be performed or supervised by personnel knowledgeable about batteries and the required precautions.

Please get in touch with your battery supplier for detailed installation and maintenance information.

Caution: Do not dispose of batteries in a fire. The batteries may explode.

Do not open or damage batteries. Released electrolyte is harmful to the skin and eyes. It may be toxic.

Caution: A battery can present a risk of electrical shock and high short-circuit current. The following precautions should be observed when working on batteries:

- a) Remove watches, rings, or other metal objects.
- b) Use tools with insulated handles.
- c) Wear rubber gloves and boots.
- d) Do not lay tools or metal parts on top of batteries.
- e) Disconnect the charging source before connecting or disconnecting battery terminals.

f) Determine if the battery is inadvertently grounded. If inadvertently grounded, remove the source from the ground.

Contact with any part of a grounded battery can result in an electrical shock. The likelihood of such shock can bereduced if such grounds are removed during installation and maintenance.

Appendix

9.1 Technical parameters

Module specification

Master BMS/Sub-Master BMS

matter Emered Matter Eme	
Operation Voltage	150–1000V/ 700–1500V (Need to confirm upon order)
Max. Charge/Discharge Current	100A
Recommend Charge/Discharge Current	100A
	Pre-charge, Over-Less Voltage/Over-Less Temperature Protection,
Functions	Cells Balancing/SOC-SOH calculationetc.
Communication Protocol/Connector Type	CAN/RS485 ModBus, TCP/IP/ RJ45/WiFi/LAN/GPRS
Power Connection Type	Amphenol MC4
User Interface	LCD Display (Optional, need to be confirmed upon order)
Dimension [W×H×D]	518×180×367mm
Weight	10kg
Operating Temperature	-20-55℃
Ingress Protection	IP21
Installation Method	Rack Mounted
Warranty	10 years

Battery Module	
Nominal Voltage/Capacity per Module	38.4V/ 3.84KWH
Expand Capability	String: Max. 1000V [20*3.84kWh], Optional 1500V [34*3.84kWh]
DOD Recommended	90%
Max. Charge/Discharge Current	100A Continual
Recommend Charge/Discharge Current	100A Continual
Communication Protocol/Connector Type	CAN/ RJ45
Power Connection Type	Amphenol Original with Lock
Dimension [W×H×D]	435×95×734mm per module
Weight	40kg
Charge Temperature Range	0−45°C
Discharge Temperature Range	-20-55℃
Ingress Protection	IP21
Installation Method	Rack Mounted
Cables Connection Method	Connection at front
Warranty	10 years or 8,000 cycles @90% DOD

Product specification

Model	WTS-25K-100	WTS-30K-100
	PV Input	
Start-up voltage (V)	135	135
Max. DC input voltage (V)	1000	1000
Rated DC input voltage (V)	620	620
MPPT voltage range (V)	200-850	200-850
No. of MPP trackers	4	4
No. of DC inputs per MPPT	2	2
Max. input current (A)	30*4	30*4
Max. short-circuit current (A)	40*4	40*4
	Battery Side	
Battery type	Lithium Battery (with BMS)	
Battery communication mode	CAN	CAN
Battery voltage range (V)	135-750	135-750
Maximum charging current (A)	100	100
Maximum discharge current (A)	100	100
-	Grid Side	
Rated output power (kW)	25.0	30.0
Max. output power (kW)	27.5	33.0/30.0 ¹⁾
Rated output apparent power (kVA)	25.0	30.0
Max. output apparent power (kVA)	27.5	33.0/30.0 ²⁾
Max. input apparent power (kVA)	30.0	36.0
Max. charging power of battery (kW)	25.0	30.0
Rated AC voltage (V)	31 /N/DE 330/380	V; 230/400V; 240/415V
Rated AC frequency (Hz)	50/60	50/60
Rated output current (A)	38.0	43.5
Max. output current (A)	42.0	50.0/43.5 ³⁾
Max. input current (A)	42.0	52.2
Power factor		ng0.8 lagging
Max. total harmonic distortion		ed output power
DCI	-	0.5%ln
	Back-up Side	
Rated output power (kW)	25.0	30.0
Max. output power (kW)	27.5	33.0
Rated output apparent power (kVA)	25.0	30.0
Max. output apparent power (kVA)	27.5	33.0
Rated output current (A)	38.0	43.5
Max. output current (A)	42.0	50.0
JPS switching time	<20ms	<20ms
Rated output voltage (V)		V; 230/400V; 240/415V
Rated output frequency (Hz)	50/60	50/60
Peak output apparent power (kVA)	30, 60s	36, 60s
Voltage harmonic distortion	<3% @	Linear load

Model	WTS-25K-100	WTS-30K-100		
	Efficiency			
Max. efficiency	98.8%	98.8%		
European efficiency	98.3%	98.3%		
	Protection			
DC reverse polarity protection	Ir	ntegrated		
Battery input reverse connection protection	Integrated			
Insulation resistance protection	Integrated			
Surge protection	Ir	Integrated		
Over-temperature protection	Ir	Integrated		
Residual current protection	Ir	ntegrated		
Islanding protection	Integrated	l (Frequency shift)		
AC over-voltage protection	Ir	ntegrated		
Overload protection	Ir	ntegrated		
AC short-circuit protection	Ir	ntegrated		
	General Data			
Over voltage category	PV:	2 ; Main: 3		
Dimensions (mm)	800*620*300 (W*H*D)			
Weight (KG)	72			
Protection degree	IP65			
Standby self-consumption (W)	< 15			
Topology	Transformerless			
Operating Temperature Range (°C)	- 30 ~ 60			
Relative Humidity (%)	0~100			
Operating Altitude (m)	3000 (> 3	3000 (> 3000m derating)		
Cooling	Smart fan			
Noise Level (dB)	< 50			
Display	OLED & LED			
Communication	CAN, RS485, WiFi/LAN (Optional)			
	1			
Model	WTS-36K-100	WTS-40K-100		
	PV Input			
Start-up voltage (V)	135	135		
Max. DC input voltage (V)	1000	1000		
Rated DC input voltage (V)	620	620		
	200-850	200-850		
MPPT voltage range (V)				
	4	4		
MPPT voltage range (V) No. of MPP trackers No. of DC inputs per MPPT				
	4 2 30*4	4 2 30*4		

Model	WTS-36K-100	WTS-40K-100		
	Battery Side			
Battery type	Lithium Battery (with BMS)			
Battery communication mode	CAN	CAN		
Battery voltage range (V)	135 - 750	135 - 750		
Maximum charging current (A)	100	100		
Maximum discharge current (A)	100	100		
	Grid Side			
Rated output power (kW)	36.0	40.0		
Max. output power (kW)	39.6	44.0		
Rated output apparent power (kVA)	36.0	40.0		
Max. output apparent power (kVA)	39.6	44.0		
Max. input apparent power (kVA)	43.5	48.0		
Max. charging power of battery (kW)	36.0	40.0		
Rated AC voltage (V)		230/400V; 240/415V		
Rated AC frequency (Hz)	50/60	50/60		
Rated output current (A)	52.0	60.0		
Max. output current (A)	60.0	66.0		
Max. input current (A)	63.0	69.6		
Power factor		0.8 lagging		
Max. total harmonic distortion	<3% @Rated	d output power		
DCI	_	.5%ln		
	Back-up Side			
Rated output power (kW)	36.0	40.0		
Max. output power (kW)	39.6	44.0		
Rated output apparent power (kVA)	36.0	40.0		
Max. output apparent power (kVA)	39.6	44.0		
Rated output current (A)	52.0	60.0		
Max. output current (A)	60.0	66.0		
UPS switching time	<20ms	<20ms		
Rated output voltage (V)	3/N/PE, 220/380V; 23	30/400V; 240/415V		
Rated output frequency (Hz)	50/60	50/60		
Peak output apparent power (kVA)	43.5, 60s	48, 60s		
Voltage harmonic distortion	<3% @Lin			
	Efficiency			
Max. efficiency	98.8%	98.8%		
European efficiency	98.3%	98.3%		
	Protection			
DC reverse polarity protection	Integr	rated		
Battery input reverse connection protection	Integrated			
Insulation resistance protection	Integrated			
Surge protection	Integrated			
	Integrated			
Over-temperature protection		Integrated		
	Integr			
Residual current protection	Integr Integrated (Fre	equency shift)		
Residual current protection Islanding protection	Integr	equency shift)		
Over-temperature protection Residual current protection Islanding protection AC over-voltage protection Overload protection	Integr Integrated (Fre	equency shift) rated		

Model	WTS-36K-100	W (W	S-40K-100	
	General Da	ta		
Over voltage category		PV: 2 ; Main: 3		
Dimensions (mm)		800*620*300 (W*H*D)	1	
Weight (KG)		72		
Protection degree		IP65		
Standby self-consumption (W)		< 15		
Topology		Transformerless		
Operating Temperature Range (°C)		- 30 ~ 60		
Relative Humidity (%)		0 ~ 100		
Operating Altitude (m) Cooling		3000 (> 3000m derating Smart fan))	
Noise Level (dB)		< 50		
Display		OLED & LED		
Communication	CA	N, RS485, WiFi/ LAN (Opt	ional)	
	0,		,	
Model	WTS-50K-100	WTS-40K-P-100	WTS-50K-100-	
	PV Input			
Start-up voltage (V)	135	135	135	
Max. DC input voltage (V)*	1000	1000	1000	
Rated DC input voltage (V)	620	620	620	
MPPT voltage range (V)*	200-850	200-850	200-850	
No. of MPP trackers	4	2	2	
No. of DC inputs per MPPT	2	3	3	
Max. input current (A)	30*4	60*2	60*2	
Max. short-circuit current (A)	40*4	80*2	80*2	
Battery type	Battery Sid	e Lithium Battery (with I	ewe)	
Battery communication mode	CAN	CAN	CAN	
Battery voltage range (V)	135-750	135-750	135-750	
Maximum charging current (A)	100	100	100	
Maximum discharge current (A)	100	100	100	
-	Grid Side			
Rated output power (kW)	50.0	40.0	50.0	
Max. output power (kW)	55.0	44.0	55.0	
Rated output apparent power (kVA)	50.0	40.0	50.0	
Max. output apparent power (kVA)	55.0	44.0	55.0	
Max. input apparent power (kVA)	60.0	48.0	60.0	
Max. charging power of battery (kW)	50.0	40.0	50.0	
Rated AC voltage (V)	3L/N/PE, 220/380V; 230/400V; 240/415V			
Rated AC frequency (Hz)	50/60	50/60	50/60	
Rated output current (A)	75.0	60.0	75.0	
Max. output current (A)	83.5	66.0	83.5	
Max. input current (A)	87.0	69.6	87.0	
Power factor		0.8 leading0.8 lag		
Max. total harmonic distortion		< 3% @Rated output	power	
DC		< 0.5%ln		

Model	WTS-50K-100	WTS-40K-P-100	WTS-50K-100-P	
	Back-up	Side		
Rated output power (kW)	50.0	40.0	50.0	
Max. output power (kW)	55.0	44.0	55.0	
Rated output apparent power (kVA)	50.0	40.0	50.0	
Max. output apparent power (kVA)	55.0	44.0	55.0	
Rated output current (A)	75.0	60.0	75.0	
Max. output current (A)	83.0	66.0	83.0	
UPS switching time	<20ms	<20ms	<20ms	
Rated output voltage (V)	3	3/N/PE, 220/380V; 230/400V	'; 240/415V	
Rated output frequency (Hz)	50/60	50/60	50/60	
Peak output apparent power (kVA)	60, 60s	48, 60s	60, 60s	
Voltage harmonic distortion	·	<3% @Linear load		
	Efficienc	y		
Max. efficiency	98.8%	98.8%	98.8%	
European efficiency	98.3%	98.3%	98.3%	
,	Protectio	n		
DC reverse polarity protection		Integrated		
Battery input reverse connection protection		Integrated		
Insulation resistance protection	Integrated			
Surge protection		Integrated		
Over-temperature protection	Integrated			
Residual current protection	Integrated			
Islanding protection	Integrated (Frequency shift)			
AC over-voltage protection	Integrated			
Overload protection	Integrated			
AC short-circuit protection	Integrated			
	General [Data		
Over voltage category	PV: 2 ; Main: 3			
Dimensions (mm)	800*620*300 (W*H*D)			
Weight (KG)	72			
Protection degree	IP65			
Standby self-consumption (W)	< 15			
Тороюду	Transformerless			
Operating Temperature Range (°C)	- 30 ~ 60			
Relative Humidity (%)	0 ~ 100			
Operating Altitude (m)	3000 (> 3000m derating)			
Cooling		Smart fan		
Noise Level (dB)	< 50			
Display		OLED & LED		
Communication	CAN, RS485, WiFi/LAN (Optional)			

1) AS 4777.2&VDE-AR-N 4105: 15.0kW

2) AS 4777.2&VDE-AR-N 4105: 15.0kVA

3) AS 4777.2&VDE-AR-N 4105: 43.5A

Max. operating DC voltage is 850V, max. withstanding DC voltage is 1000 V

*The output power will exceed the rated value only when the power in the PV array is sufficient, and the duration of the overload is related to the overload power.

I) AS 4777.2, VDE-AR-N 4105: 30.0kW 2) AS 4777.2, VDE-AR-N 4105: 30.0kVA 3) AS 4777.2, VDE-AR-N 4105: 43.5A

* Max apparent power from the grid means the maximum power imported from the utility grid used to satisfy the backup loads and charge the battery.

* Wattsonic reserves the right to modify the technical datasheet and apperance of the product in the cataloge without prior advice to the users.

9.2 Contact information

Should you have any questions about this product, please contact us.

We need the following information to provide you the best assistance:

- Model of the device
- Serial number of the device
- Date of the device
- Fault code/name
- Brief description of the problem

China (HQ)

Wuxi Wattsonic Energy Technology Co., Ltd

Address: HI NO.6 Jingxian Road, Xinwu District, Wuxi 214135, Jiangsu Province, China

Website: www.wattsonic.com

Service Mail: service@wattsonic.com

* Wattsonic reserves the right to modify the technical datasheet and apperance of the product in the cataloge without prior advice to the users.

